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multivariate ¢ distribution has been
Bayesian Analysis of Mixture shown as a robust extension of normal
Modeling Using the Multivariate ¢  MiXtures. In this paper, we present a
Distribution Bayesian approach for inference about
parameters of #-mixture models. The
specifications of prior distributions are
weakly informative to avoid causing
nonintegrable posterior  distributions.
We present two efficient EM-type
algorithms for computing the joint
posterior mode with the observed data
and an incomplete future vector as the
t sample. Markov chain Monte Carlo
sampling schemes are also developed to
t obtain the target posterior distribution of
parameters. The advantages of Bayesian
approach over the maximum likelihood
method are demonstrated via a set of

real data.
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EM
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ECM; ECME; maximum a posteriori;
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ECM ECME Finite mixture models introduced
by Pearson (1894) have been a useful
tool for modeling the data that are
thought to come from several di®erent

A finite mixture model using the groups with varying proportions. In the



past two decades, tremendous
improvements and applications have
been made in across many research
fields. The fundamental idea and
usefulness of the mixture models are
explained in McLachlan and Basford
(1988) and Titterington (1985). A
comprehensive introduction to the
theory and recent advances can be found
in McLachlan and Peel (2000).
Historically, much effort has been
devoted to the maximum likelihood (ML)
approach for fitting the mixture models.
It was first considered by Rao (1948),
who used Fisher’s scoring method for a
mixture of two normal distributions with
equal variance. The computation of ML
estimates cannot be easily manipulated
until the EM agorithm was introduced
by Dempster et al. (1977). More
recently, Peel and McLachlan (2000)
considered how to model a mixture of
multivariate ¢ distributions.  They
provided the ECM agorithm for
parameter estimation and showed the
robustness of the model in clustering.
Redner and Walker (1984) pointed
out that the ML approach for finite
mixture model could encounter
unbounded likelihood in some special
cases. Hathaway (1985) suggested that
usng simple constraints in an
optimization problem can lead to a
strongly consistent and global solution.
Hosmer (1973) gave an example of
including a portion of labeled
observations for each component.
However, both solutions are restricted to

the univariate case.

In recent developments  of
computational methods, = Bayesian
methods are considered an alternative
way to deal with mixture models.
Diebolt and Robert (1994) used data
augmentation and Gibbs sampling as
approximation methods for evaluating
the posterior distribution and Bayes
estimators. They also showed that the
duality principle leads to stronger and
more general results about the
convergence of the smulated Markov
chains and of the related moments.
Richardson and  Green  (1997)
considered a hierarchical prior that avoid
the mathematical pitfals of using
improper priors in mixture model. More
recently, Fruhwirth-Schnatter (2001)
explored the MCMC output of the
random sampler to find suitable
identifiability constraints in dealing with
label switching problems.

In this article, we extend the ML
approach of Peel and McLachlan (2000)
to dea with a mixture of ¢ distributions
from Bayesian viewpoints. Since some
observations could be missing in many
practical situations, our approach is
more general asit allows for some of the
observed vectors to be partly known. For
the sake of clarity, we only demonstrate
one partly known individual and treat it
as an incomplete future vector in the
model. We compare the prediction and
classification results on a rea data set
between ML and MCMC techniques via
cross-validations.



In conclusion, this paper has
established efficient EM-type algorithms
for calculating the joint posterior mode
and provided a workable MCMC
algorithm for sampling from the
posterior distribution of ¢ mixture
models. Our agorithms appear quite
flexible and have applications in
prediction and classification of a
partially observed vector. Meanwhile,
one can straightforwardly evaluate the
predictive distribution using MCMC
samples. The techniques can be applied
in the presence of missing data and
easily generalized to situations in which
a set of incomplete future vectors are
simultaneously considered.

In our illustrated example,
Bayesan MCMC can provide more
accurate classification probability and
better prediction accuracy than the ML
method. It isfair to say that the proposed
Bayesian methods should be quite useful
for practitioners in deaing with a
mixture of ¢ distributions.
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Bayesian Estimation for Time
Series Regressionswith Applications

time series regression
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We propose an estimation procedure for
the time series regression models under
the Bayesian inference framework. The
major obstacle for estimating a time
series involves treating its initial terms.
With the exact method of Wise (1955),

an exact likelihood function can be
obtained, which can be used to estimate
the parameters. We also propose a
reparameterization that does not conflict
with the stationarity of the time series,
which was not taken into consideration
by Chib(1993) and Chib and
Greenberg(1994). Simulation studies
show that our method leads to more
accurate inferences.

Key Words:
autoregressive process, exact likelihood;
MCMC.

Consider a regression model possessing
error terms  with mean zero and
unknown variance. The assumption that
the errors are uncorrelated is generaly
unrealistic. Violations of independent
assumption can be checked by using
residual plots, run test, Durbin-Watson

C htéstband so on. In most analysis of time

series, it is often shown that the
covariance matrix of the regression
model disturbance terms has a Markov
pattern. In this paper, we develop an
exact method to anayze time series
regressson models in a Bayesian
framework. To avoid contradicting the
stationarity of the time series,
reparameterization is required. Detailed
description is presented in Section 2.
Parameter estimation will be done using
the Gibbs sampling and
Metropolis-Hastings algorithm.
Compared with a simple regression
model, the major obstacle for estimating



a time series regression model involves
treating its initial terms. Bayesian
inference for time series regression
regarding  autoregressive  processes
conditional on initia observations has
been considered by Chib (1993),
McCulloch and Tsay (1994), and Albert
and Chib (1993), among others.
However, conditioning on the initia
terms, the problem setting loses its time
series feature completely and 3 becomes
a pure regression problem. In this paper,
we consider the likelihood that is not
conditional on the initial observations.
We employ the results of Wise (1955) to
obtain an inverse autocovariance matrix
in the exact likelihood function. An
dternative expression of the exact
likelihood function for a pth order
autoregressive process can aso be found
in Box and Jenkins (1976). However,
the exact likelihood function in
regression form as presented in the
paper is more appeaing. Chib and
Greenberg (1994) developed exact
methods to analyze time series model in
a Bayesian framework which expressed
the time series regression model in state
gpace form. By using the same time
series regression models, we will
compare our results with those of Chib
(1993) and Chib and Greenberg (1994)
in asimulation study.

In conclusion, we propose a
Bayesian estimation procedure for a
simple but most frequently used model
in practice, namely the time series
regression models. We use the exact

likelihood instead of the likelihood
conditional on initial observations based
on Wise (1955). With the application of
the transformation from ¢ to the partia
autocorrelations (PACF) n = (51, - - -,
np)1, the stationarity condition of ¢
becomes || < 1, i =1, - - - p.
Consequently, the proposed procedure
will be valid for any order of the AR(p)
process. Therefore, there is no difficulty
in dealing with the AR(p) model with p
> 3. We obtained better inferentia
results on smulations when compared
with those results in Chib (1993) and
Chib and Greenberg (1994). The results
for real data sets show that the fitted
models are adequate for the data sets.
The proposed methodology can be
extended in the following directions.

1. The estimation procedure can be
extended to regresson with ARMA
errors. The exact closed form of the
likelihood function of a general ARMA
model can be found in Newbold (1974)
and Hillmer and Tiao (1979) among
others.

2. To dlow heteroscedasticity in &, we
can assume GARCH-type conditional
variance. Time series regression model
with GARCH errors has become very
common in econometric and nancial
research.

3. When we deal with financial data,
typical empirical evidence in the
literature indicates that & is usualy



fat-tailed. In future work, we could
consider leptokurtic distributions as
distributions for &, such as student
t-distribution or generalized error
distribution.

Albert, J. and S. Chib, 1993, Bayesian
inference for autoregressive time series
with mean and variance subject to
Markov jumps, Journal of Business and
Economic Statistics, 11,1-15.

Barndor.-Nielsen, O. E., Schou, G.,
1973. On the parameterisation of
autoregreeive  models by  partia
autocorrelations. J. Multivariate. Anal. 3,
408-419.

Box, G.E.P. and G.M. Jenkins, 1976,
Time Series Analysis Forecasting and
Control, 2™ ed. (Holden-Day, San
Francisco, CA).

Chen, C. W. S. and Wen, Y u-Wen, 2001,
On goodness of fit for time series
regression models. Journal of Statistical

Computation  and  Simulation, 6,

239-256.

Chib, S., 1993, Bayes regression with
autogressive errors. A Gibbs sampling
approach, Journal of Econometrics, 58,
275-294.

Chib, S., and E. Greenberg, 1994, Bayes

inference in regresson model with
ARMA(p,) Errors,  Journal of

Econometrics, 64, 183-206.

Chib, S. and Greenberg, E., 1995,
Understanding the Metropolis-Hastings
algorithm, American Statistician, 49,
327-335.

Hastings, W. K., 1970, Monte-Carlo
sampling methods using Markov chains
and their applications, Biometrika, 57,
97-1009.

Hillmer, S. C. and G.C. Tiao, 1979,
Likelihood function of stationary
multiple autoregressive moving average
models, Journal American Statistical
Association, 74, 652-660.

Metropolis, N., Rosenbluth, A. W.,
Rosenbluth, M. N., and Teller, A. H,,
1953, Equations of state calculations by
fast computing machines. Journal of
Chemical Physics, 21, 1087-1091.

McCulloch, R. E. and R.S. Tsay, 1994,
Bayesian analysis of autoregressive time
series via the Gibbs sampler, Journal of
Time Series Analysis, 15, 235-250.

Newbold, P., 1974, The exact likelihood
function for a mixed autoregressive
moving average process, Biometrika, 61,
423-426.

Raftery, A. E. and SM. Lewis, 1992,
How many iterations in the Gibbs
sampler? In Bayesian Statistics 4 (eds J.
M. Bernardo, J. O. Berger, A. P. Dawid



and A. F. M. Smith), 765-776. (Oxford
University Press, Oxford).

So, M. K. P. and Chen, C. W. S,, 2003,
Subset threshold autoregression. Journal
of Forecasting, 22, 49-66.

Wise, J.,1955, The autocorrelation
function and spectral density function,
Biomertrics, 42, 151-159.



