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本報告含二篇完成之研究成果。 

 

一 、 Bayesian Analysis of Mixture 

Modeling Using the Multivariate t 
Distribution 

 

此乃與博士生林宗儀教授（目前任教

於東海大學統計系）及碩士生倪惠芬

（目前就讀於台大公衛所博士班）合

作的文章。本文已被 Statistics and 

Computing(an SCI  journal) 接受。不久

即將出刊。其中、英文之摘要如下。 

 

（一）、中文摘要 

使用多變量t分佈的有限混合模型已

被顯示為常態混合的穩健性延伸。本

文中，我們使用貝氏方法來推論t分

佈的混合模型的參數。微弱訊息的先

驗分佈用以避免造成不可積分的後驗

分佈。我們使用已觀察到的數據和非

完整的未來向量當作樣本，提出兩個

後驗分佈最高點的有效EM程式。同時

也使用馬可夫鏈蒙地卡羅 (MCMC)抽

樣策略以得到參數的驗後分佈。我們

藉由實際的例子證明貝氏方法優於最

大概似法。  

 

關鍵詞： 

ECM、ECME、最大後驗值、最大概似估

計法、馬卡夫鏈蒙地卡羅、t分佈的混

合模型 

 

（二）、英文摘要 

A finite mixture model using the  

 

 

multivariate t distribution has been 
shown as a robust extension of normal 
mixtures. In this paper, we present a 
Bayesian approach for inference about 
parameters of t-mixture models. The 
specifications of prior distributions are 
weakly informative to avoid causing 
nonintegrable posterior distributions. 
We present two efficient EM-type 
algorithms for computing the joint 
posterior mode with the observed data 
and an incomplete future vector as the 
sample. Markov chain Monte Carlo 
sampling schemes are also developed to 
obtain the target posterior distribution of 
parameters. The advantages of Bayesian 
approach over the maximum likelihood 
method are demonstrated via a set of 
real data. 
 
Keywords:  
ECM; ECME; maximum a posteriori; 
maximum likelihood estimation; MCMC; 
t mixture model 
 

（三）、報告內容 

Finite mixture models introduced 
by Pearson (1894) have been a useful 
tool for modeling the data that are 
thought to come from several di®erent 
groups with varying proportions. In the 
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past two decades, tremendous 
improvements and applications have 
been made in across many research 
fields. The fundamental idea and 
usefulness of the mixture models are 
explained in McLachlan and Basford 
(1988) and Titterington (1985). A 
comprehensive introduction to the 
theory and recent advances can be found 
in McLachlan and Peel (2000). 

Historically, much effort has been 
devoted to the maximum likelihood (ML) 
approach for fitting the mixture models. 
It was first considered by Rao (1948), 
who used Fisher’s scoring method for a 
mixture of two normal distributions with 
equal variance. The computation of ML 
estimates cannot be easily manipulated 
until the EM algorithm was introduced 
by Dempster et al. (1977). More 
recently, Peel and McLachlan (2000) 
considered how to model a mixture of 
multivariate t distributions. They 
provided the ECM algorithm for 
parameter estimation and showed the 
robustness of the model in clustering. 

Redner and Walker (1984) pointed 
out that the ML approach for finite 
mixture model could encounter 
unbounded likelihood in some special 
cases. Hathaway (1985) suggested that 
using simple constraints in an 
optimization problem can lead to a 
strongly consistent and global solution. 
Hosmer (1973) gave an example of 
including a portion of labeled 
observations for each component. 
However, both solutions are restricted to 

the univariate case.  
In recent developments of 

computational methods, Bayesian 
methods are considered an alternative 
way to deal with mixture models. 
Diebolt and Robert (1994) used data 
augmentation and Gibbs sampling as 
approximation methods for evaluating 
the posterior distribution and Bayes 
estimators. They also showed that the 
duality principle leads to stronger and 
more general results about the 
convergence of the simulated Markov 
chains and of the related moments. 
Richardson and Green (1997) 
considered a hierarchical prior that avoid 
the mathematical pitfalls of using 
improper priors in mixture model. More 
recently, Fruhwirth-Schnatter (2001) 
explored the MCMC output of the 
random sampler to find suitable 
identifiability constraints in dealing with 
label switching problems. 

In this article, we extend the ML 
approach of Peel and McLachlan (2000) 
to deal with a mixture of t distributions 
from Bayesian viewpoints. Since some 
observations could be missing in many 
practical situations, our approach is 
more general as it allows for some of the 
observed vectors to be partly known. For 
the sake of clarity, we only demonstrate 
one partly known individual and treat it 
as an incomplete future vector in the 
model. We compare the prediction and 
classification results on a real data set 
between ML and MCMC techniques via 
cross-validations. 
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In conclusion, this paper has 
established efficient EM-type algorithms 
for calculating the joint posterior mode 
and provided a workable MCMC 
algorithm for sampling from the 
posterior distribution of t mixture 
models. Our algorithms appear quite 
flexible and have applications in 
prediction and classification of a 
partially observed vector. Meanwhile, 
one can straightforwardly evaluate the 
predictive distribution using MCMC 
samples. The techniques can be applied 
in the presence of missing data and 
easily generalized to situations in which 
a set of incomplete future vectors are 
simultaneously considered. 

In our illustrated example, 
Bayesian MCMC can provide more 
accurate classification probability and 
better prediction accuracy than the ML 
method. It is fair to say that the proposed 
Bayesian methods should be quite useful 
for practitioners in dealing with a 
mixture of t distributions. 
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（五）、計畫成果自評 

本研究成果乃計畫所提研究的一部

份，其被接受的期刊是個Impact 
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Factor 1.00的國際刊物，相當值得。 

 

 

二、Bayesian Estimation for Time 
Series Regressions with Applications 
 

此乃與逢甲大學陳婉淑教授、博士生

牛維方、碩士生李向宇合作的文章。

是一篇有關 time series regression的貝

氏分析。此與所提之計畫有關。本文

已被 Journal of Statistical Computing and 

Simulation ( an SCI journal) 所接受。其

中、英文摘要如下。 

 

（一）、中文摘要 

此計畫中，我們在貝氏的推演架構

下，為時間序列迴歸模型提供一個估

計程序。估計時間序列中，主要的障

礙包含探討其起始的觀察值。我們可

藉由 Wise(1955)的準確方法，得到一

個準確概似函數，用以估計參數。我

們也提出了一個不會和時間序列之穩

定性相衝突的重新參數化，這是

Chib(1993) 以 及 Chib 和

Greenberg(1994)的研究中未考慮到

的。模擬研究顯示我們的方法可獲得

更準確的推演。 

 

關鍵詞： 

自回歸過程、概似、馬卡夫鏈蒙地卡

羅 

 

（二）、英文摘要 

We propose an estimation procedure for 
the time series regression models under 
the Bayesian inference framework. The 
major obstacle for estimating a time 
series involves treating its initial terms. 
With the exact method of Wise (1955), 

an exact likelihood function can be 
obtained, which can be used to estimate 
the parameters. We also propose a 
reparameterization that does not conflict 
with the stationarity of the time series, 
which was not taken into consideration 
by Chib(1993) and Chib and 
Greenberg(1994). Simulation studies 
show that our method leads to more 
accurate inferences. 
 
Key Words:  
autoregressive process; exact likelihood; 
MCMC. 
 

（三）、報告內容 

Consider a regression model possessing 
error terms with mean zero and 
unknown variance. The assumption that 
the errors are uncorrelated is generally 
unrealistic. Violations of independent 
assumption can be checked by using 
residual plots, run test, Durbin-Watson 
test and so on. In most analysis of time 
series, it is often shown that the 
covariance matrix of the regression 
model disturbance terms has a Markov 
pattern. In this paper, we develop an 
exact method to analyze time series 
regression models in a Bayesian 
framework. To avoid contradicting the 
stationarity of the time series, 
reparameterization is required. Detailed 
description is presented in Section 2. 
Parameter estimation will be done using 
the Gibbs sampling and 
Metropolis-Hastings algorithm. 
Compared with a simple regression 
model, the major obstacle for estimating 
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a time series regression model involves 
treating its initial terms. Bayesian 
inference for time series regression 
regarding autoregressive processes 
conditional on initial observations has 
been considered by Chib (1993), 
McCulloch and Tsay (1994), and Albert 
and Chib (1993), among others. 
However, conditioning on the initial 
terms, the problem setting loses its time 
series feature completely and 3 becomes 
a pure regression problem. In this paper, 
we consider the likelihood that is not 
conditional on the initial observations. 
We employ the results of Wise (1955) to 
obtain an inverse autocovariance matrix 
in the exact likelihood function. An 
alternative expression of the exact 
likelihood function for a pth order 
autoregressive process can also be found 
in Box and Jenkins (1976). However, 
the exact likelihood function in 
regression form as presented in the 
paper is more appealing. Chib and 
Greenberg (1994) developed exact 
methods to analyze time series model in 
a Bayesian framework which expressed 
the time series regression model in state 
space form. By using the same time 
series regression models, we will 
compare our results with those of Chib 
(1993) and Chib and Greenberg (1994) 
in a simulation study. 

In conclusion, we propose a 
Bayesian estimation procedure for a 
simple but most frequently used model 
in practice, namely the time series 
regression models. We use the exact 

likelihood instead of the likelihood 
conditional on initial observations based 
on Wise (1955). With the application of 
the transformation from φ to the partial 
autocorrelations (PACF) η = (η1, · · ·, 
ηp)T, the stationarity condition of φ 
becomes |ηi| < 1, i = 1, · · ·, p. 
Consequently, the proposed procedure 
will be valid for any order of the AR(p) 
process. Therefore, there is no difficulty 
in dealing with the AR(p) model with p 
> 3. We obtained better inferential 
results on simulations when compared 
with those results in Chib (1993) and 
Chib and Greenberg (1994). The results 
for real data sets show that the fitted 
models are adequate for the data sets. 
The proposed methodology can be 
extended in the following directions. 
 
1. The estimation procedure can be 
extended to regression with ARMA 
errors. The exact closed form of the 
likelihood function of a general ARMA 
model can be found in Newbold (1974) 
and Hillmer and Tiao (1979) among 
others. 
 
2. To allow heteroscedasticity in εt, we 
can assume GARCH-type conditional 
variance. Time series regression model 
with GARCH errors has become very 
common in econometric and nancial 
research. 
 
3. When we deal with financial data, 
typical empirical evidence in the 
literature indicates that εt is usually 
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fat-tailed. In future work, we could 
consider leptokurtic distributions as 
distributions for εt, such as student 
t-distribution or generalized error 
distribution. 
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（五）、計畫成果自評 
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與所提之計畫有關。應是篇有價值的

產品。 


