FREATAELE L EFAL Y E 23R

Web Switch & g 3+ 8o 4 1£(2/2)

FEEe s BuAE
2+ % 3 1 NSCO1-2219-E-009-032-
MW 91E 087 Olp 3 92 079 31p

REFE: W2d A FTR1a5 %

PEAA L

PR FE AR R FREL T R XA

¢ ® 3 R 92&£100 17

THRRATFELR ERBHERBATIR~*
¥4
25 9% P 3 R K 2 S 2K SO R S SOOI R OROOK
KK
DS Web Switch & seek s+ 5l i7 (2/2)
25 9% P 3 R K 2 I 2K S R S SOOI R OO K
2SS
VR MeuARtE OFeAE

3% %¥L 1 NSC90—2213—E—009—089—
HEHPRE 91 #2082 01px92#07" 31p

PRI o REIRAAFTRIRS L K

¥L —

‘-%3—\—\1\-

* o KR 1#{;‘ TR 2 "'T'* :
(AR LAY B
D&rr%&HiéP”sﬁﬁ
D*@Wm§m€&»n$*£%aiﬁ £

N\

(IR & e g d M mT 23 - 6

A B ST RA C T - ettt et et et et et e e e e e

Y-

PART |: FAST /P ROUTING TABLE

LOOKUP............cccecvvenn. 8

[N =Sy =YX T

1.2 INTRODUCTIONocvieiisesesietetses s ss st ses e seststsses s sesessenenns

|.3 BINARY SEARCH ON PREFIX

LENGTHS.......oo i, 11

|.4 MULTI-WAY SEARCH ON PREFIX LENGTHS.....ccccccuueee.
|.5 EXPERIMENTAL RESULTS .ceiiiiiiiiiiiirrreir e snsnneeees

1.6 CONCLUSION.......cururveretriieereseesetesesetesesssssesssssesesesssnessens

PART Il: STRING MATCHING ALGORITHMSAND I TS

HARDWARE IMPLEMENTATIONS.........ccoeeeeeennn.

1.1 ABSTRACT ..eieiiiteeeireeeieee e e seessneeesne e e sne e snee s

[1.2 INTRODUCTION ...iiiiiiiiieee e e e e eeeennennnreeee e e e e e e s ennnnnnseeeeaaeeeas 24

| 1.3 STRING MATCHING ALGORITHMS ...uviiiieeeeeeciirreeeeee e 25
A.1 DYNAMIC PROGRAMMING ALGORITHM ..cocueiriirieinniensenseesneneeeeeneas 25
A.2 AUTOMATON ALGORITHMS...ciiuiiiiiieieesieesieesireesseesreesnessneessneens 26

A.2.1 AHO-CROASICK ALGORITHM ..ocuiiiiiiiiniiie s s 27_
A.2.2 REVERSE FACTOR ALGORITHM ...oiiiiiiiiiie i 28_
A.2Z3MULTIBDM ALGORITHM ..ocuiiiiiiiiiinie i 29_
A.3REGULAR EXPRESSION ALGORITHM ...ooiiiiiiiieniee e sieees s iee s 30_
A LAFILTER ALGORITHMS ..ottt et ne e e e 32_
A4LKMP ALGORITHM oottt s 32_
A.4.2BOYER-MOORE ALGORITHM ...cciiiiiiiiniisie s s 33_

A 43 COUNTING FILTER ..ociiiiiii e 35_
A.DBIT PARALLEL ALGORITHMS...coiiiiiiieaiieeeiieeesiee e e e 36_
A.5.1 SHIFT-OR ALGORITHM ...oiiiiiiiiiiieie s s 37_
A.5.2 ADVANCED BIT PARALLEL ALGORITHMSuiiiiiiiiiinieiese e 38_
A.5.3BIT PARALLEL FOR SUFFIX AUTOMATON ALGORITHM ...coouiiiiiiiiiiieene, 38_
A.5.4BIT PARALLEL FOR REGULAR EXPRESSION.......ccociiiiiiiniiiin i 39_

| .4 HARDWARE |MPLEMENTATION FOR STRING

7y 1 LR 41
B.1 SystoLIC ARRAY HARDWARE IMPLEMENTATIONcovovveieeieeeenne 41
B.2 PARALLEL AND PIPELINE HARDWARE IMPLEMENTATION 42
B.3 RECONFIGURABLE HARDWARE IMPLEMENTATION ..cccvvvviieiieeeeenes 43

1 1.5 DISCUSSION .oeeeveeeeeeeeseeseeseeseseeeseeesesseesseneseeessesesssseeneaneens 44
C.1 STRING MATCHING

=0 1= 1 = N OSSR *2 I

C.2 RECOMMEND HARDWARE |MPLEMENTATION OF STRING

| 1.6 CONCLUSION oottt e et e e e e e e e e e e enee e

REFERENCE

LIST OF TABLE

Table
page

[.1. Comparison of average number of probes required in the binary search and our
proposed multi-way search agorithms on prefix lengths for four backbone

rr-routing t abl e s 2 0

1. 3. Boyer-Moore bad character
table... .o e . 33

1. 4. Boyer-Moore good suffix
table. e e e 34

1 .5. Boyer-Moore string matching
exampleo e e e e e e e e e e . 34

I 1 . 6 . C o un<t i n g F i I t e r
23 =T 101 1= P 1)

I I . 7 : S h [f t - o] r
2= 11010 S ¥ 4

I1.8. The example of bit parallel for suffix
automaton cii eh eh e eee e e e e . 38

I 1 . 9 . I D S string matching
=0 LU = 0 1= 0 PP .o

[1.10. Analysis of hardware Implementations of IDS string matching
a l g o r it h m s 47

LIST OF FIGURE

Figure
page

[.1. Binary search on prefix lengths for an example routing
prefixes13

[.2. Asymmetric search trees generated respectively by two heuristic approaches for
t h e e x a m p | e rr-o u t e
L= 11T

[.3. (&) Binary search and (b) 3-way search on prefix lengths in 1Pv4
p r o t o c oI 15

[.4. (a) Construction of L-marker in node / for every route prefix in a node belonging

to set G/ . (b) Construction of Rmarker in node / for any route prefix in a node

b e | o n g i n g t o s e t

1 7

|.5. The pseudo program of the 3-way search
algorithm0 0 i ol o e e e 108

.6. (a) 4-way and (b) 5-way search on prefix lengths in IPv4
pr otowcol L oL 19

I R A Dynamic Programming
example. e e e e e e e .. 26

l'1.2. Simple automaton for pattern
ababe e e e e 2T

I 1 . 3 . A n A h o - C or a s i c k
X AMPL .. it i e e e e e e e e e e e e e 0. 28

1 . 4 . A S u f f i x automat on
EXaAMPl .. e e e e i e e e 29

I I .5 . A M u It B D M
EXAMPI ..o e e e 200 30

I 1 .6 . A Glushkov's construction
EXaAMPl @ . i i e e e e e e e e e e e e 0 32

lI1.7. A Shift-or occurrence table
example... .. e e e e 3T
I1.8. Processing element of Dynamic Programming systolic
a I I A Y o e e e e 4 2
I'1.9. Pipeline and parallel processing
example... ..o e e e e e . A2
I1.10. Reconfigurable hardware acceleration
example.. 0o i i e .. 43

[1.11. Four main architecture of IDS string matching
algorithms..4686

Abstract

The purpose of this project is to investigate and implement some key functions
of a web switch. After a thorough survey, we determined to study and implement
the “persistence” and the Quality of Service (QoS) features. The reason is that many
features such as delayed binding, load sharing, and TCP splicing had been studied
extensively and already implemented in existing products. The persistence feature
means that multiple connections of a session are connected to the same server so that
a dialogue between a client and server can be continued. This is considered an
important feature for e-commerce because a user may issue multiple transactions
during hig/her visit of a commercia web site. The states of the visiting client are
stored in the server it was connected to and thus the session can be continued
smoothly if succeeding connections of the client are connected to the same server.
The persistence feature can aso improve system performance because authentication
and encryption are necessary in e-commerce and new keys have to be generated if the
client is connected to a different server. The QoS feature means that some sessions
are guaranteed a delay bound to recelve service. Thisis also an important feature for

e-commerce because customers can be satisfied with different QoS requests.

To accomplish the persistence and QoS features, mechanisms that establish
connections based on IP address and/or cookie are necessary. In other words, fast IP
address lookup and string matching are important techniques. In the following, we

describe our research results on IP address |ookup and string matching separately.

Keywords: Broadband Internet, Quality of service, IP address lookup, string matching,

e-commerce, cookie.

A

AERFHOP R AT 2 A web S AT B RN o 518
- FE e F AR g $4ﬁv$’ﬂwLamhﬁzi%$$&@ﬁﬁﬁﬁ
GRS REL M o d W H B LR F Ao BT T
TCPit¢ L% 30 SR EFT I e SFMA- LR L DA K 9L At
LI E AR R TSRS B R M AR 2 e 3 4
W0 7 ke - b osession A 4% 5 FEA T BRI ApRDPIRE > R 1EFE S g
PR B s (didogue) W iR A o R P T F F A A Y £ &
o LF R - BRY LBRT - BLIF ALV AREEALIBFILFS

I % Pk i 6 s L PIRER > F 0 ¢ B el sy LB PR

\-\-}\

p

ad

o P session BT FOFHF A o L FF R T 0Lk Bdrnit o 4

54

FlATRFE R RTE R AT UL F - B session sh4 4 o

Fé*
4y

/

\m =

IO REE R fRRALT S A §E CRBRI ROPIRER L AL
bk m A2 EgenAr A B4R E S £ MK MR o IRIBPE T A AR
FRaY - FEM o AR AR session AT PRAREVE F o d AT en
R EBENAFORBEFTE TR LI F AL T - ALk

F -

50 RSFFBERBETHME AP E RS T A IP 2y & cookie
SriE 2R AR] o 3 R quf‘b}’fﬂﬁ”’lp =5t % 3§ ¥2 string matching 4%+

RPN PR ug A IP kA 39 string matching 8 4] T B % e

M@?\?’ . %"iﬁﬁl&lﬂﬁl&ﬁx N FRszp%‘r ~ 1P IT_ZEJ_EL FE’ :"-ﬁﬁi

Part |:

FAST |P ROUTING TABLE LOOKUP

|.1. ABSTRACT

IP routing table lookup has been considered as a major bottleneck for high-speed
web switch routers. In the past few years, several data structures and related
algorithms have been developed to accomplish high-speed routing table lookup. In
particular, an efficient algorithm, called binary search on prefix lengths, was designed
by grouping prefixes of identical lengths into individual tables and applying hashing
technique in these tables to find matching prefixes. The time complexity of binary
search on prefix lengths is dog(W+1)(} assuming W bit address. In Part | of this
project, we propose a multi-way search algorithm on prefix lengths to improve the
average lookup performance of the binary search scheme without sacrificing its
worst-case search performance. The proposed scheme is so ssmple that it basically
does not increase the complexity in constructing the search tree and in memory
requirement. Through experiments on real backbone routing tables, we found that

the improvement can be more than 37% for most tables and 21% for one table.

|.2. INTRODUCTION

Because of the explosive growth of Internet traffic, the performance of IP routing
table lookup is becoming critica for high-speed routers to provide satisfactory
services. As such, many researches developed in the past few years new algorithms
to accomplish high-speed routing table lookup [1]-[10]. Some of the agorithms
compress the routing table with sophisticated data structures so that a processor can
perform routing table lookup in its cache [1]-[5] and some others use simple data
structures with special hardware to assist the search process [6]-[7]. In generd,
sophisticated data structure renders difficulty in table update and simple data structure

may require alarge amount of memory.

Since there are two parameters N (the number of route prefixes) and W (the
number of address bits) in the IP routing table lookup problem, the time complexity of
a search algorithm may depend on either Nor W, For example, linear search is a
simple algorithm of time complexity N. Since insertion and deletion of a route
prefix is very simple in linear search, it is widely used when Nissmall. To reduce
the search time, one can encode a route prefix asarange [4]. Assuming that Wis 6,
then a route prefix like 11* is actually a range addresses from 110000 to 111111.
When route prefixes are encoded as ranges, one can apply binary search for table
lookup. As was shown in [4], the search time complexity is log(2N) for N route
prefixes. Although the search time is largely reduced with binary search, it is more

difficult to insert or delete aroute prefix.

Search algorithms with time complexity depending on W are likely to be better
choices when the number of route prefixes Nislarge. Radix trie[5] isawell-known
example of routing table lookup algorithm whose time complexity depends on W
To reduce the search time, an interesting algorithm, caled binary search on prefix
lengths, proposed in [8] can search for the longest matching prefix for an incoming
packet with time complexity dog(W+1)j. In this search algorithm, the route
prefixes are organized into tables according to their lengths and uses a hashing
technique to look for the matching prefix in each of these tables. In fact, the binary
search on prefix lengths is deemed an efficient solution for routing table lookup.
However, each hash probe takes at |east one memory access, which is significant at
gigabit speeds. Thus, several variants have been developed to improve the average
lookup performance by employing a weighting function to optimize the binary search
tree pattern [9]. Unfortunately, they are not applicable to routing table lookup

because either the worst-case lookup performance is sacrificed or the tree pattern

could be atered frequently as route prefixes change. There are severa other
interesting routing table lookup algorithms. One can find a good survey of these

algorithmsin [10].

In Part | of this report, we present a multi-way search on prefix lengths to
improve the average lookup performance of standard binary search on prefix lengths
without scarifying the worst-case search time and storage requirement. This
algorithm is simple and basically does not increase the complexity in constructing the
binary tree. We show through experiments with real routing tables that the

improvement could be more than 37% for most tables and 21% for one table.

In Part |, the rest of this report is organized as follows. In Section 1.2, we
briefly review the concept of binary search on prefix lengths proposed in [8]. An
example is provided to explain the operation of such an agorithm. Our proposed
algorithm, named multi-way search on prefix lengths, is presented in Section 1.3. In
Section 1.4, we compare the lookup performance of these two schemes with some

collected routing tables. Finally, we draw conclusion in Section I.5.

|.3. BINARY SEARCH ON PREFI X
LENGTHS

The IP routing table lookup problem can be described as follows. Given an
incoming packet’s destination IP address, find the longest matching prefix among a
set of route prefixes. Since every route prefix length is variable, it is difficult to
determine how many bits of the destination address should be taken into account
when compared with the route prefixes. To overcome this problem, an interesting
approach has been proposed that allows a sequential search on length dimension.

Such an approach organizes the route prefixes in different tables according to their

lengths and uses a hashing technique to look for the matching prefix in each of these
tables. The search strategy is to probe these tables in sequence starting from the one
holding the longest prefixes and terminate whenever a match is found. Assuming
that the address length is W and a perfect hash function is applied, this approach

requires up to Wprobes.

In order to reduce the search time, a binary search on prefix lengths was
proposed in [8]. In this agorithm, markers and pre-computation are two important
mechanisms. Markers are used to guide the search process while pre-computation
avoids back tracking. More concretely, individua tables form a binary tree based on
route prefix lengths to enable binary search. To guide the binary search process, a
route prefix in table / places a marker in an ancestor node if and only if the node
representing table /7 lies in the left sub-tree of the ancestor node. (Table / denotes a
table that consists of route prefixes with length /.) To avoid back tracking, one has to
pre-compute the longest matching prefix for each marker. The longest matching
prefix of amarker is amatching route prefix that is shorter than the marker but longer
than any other matching route prefixes. Note that it is possible that a route prefix R
and a marker M both match the query address. Based on the above definition, the
longest matching prefix is R The search process starts to probe the root node. If a
match is found, we move to its left child. Otherwise, probe its right child. The
search process ends after aleaf node is probed. Clearly, the number of hash probes
is dog(W+1). Since a route prefix can generate up to logW markers, the

worst-case memory requirement is MogWwith aset of Nroute prefixes.

In Fig. 1.1, we use an example route prefixes to illustrate this scheme. The
content of individual hash tables in binary tree formisalso shownin Fig. I.1. Inthis

example, we assume that there are 12 route prefixes and Wis equal to 6. In this

figure, an entry (X, Y) represents a route prefix or a marker X and its corresponding
longest matching prefix Y. In case the longest matching prefix is null, Yis replaced
with “-". In Fig. I.1, one can find that route prefix ¢ (= 01110*) places one marker
0111* in hash table 4 and the pre-computation for this marker is route prefix /.
Further, another marker 0001* in hash table 4 is generated by route prefix / (= 000111)
but the corresponding pre-computation result is null because there is no route prefix
that is a prefix of 0001*. Assume that we are looking for the longest matching
prefix of the address 110011. The search process starts with table 4, moves to tables

6 and 5 in sequence, and then terminates. The longest matching prefix found is £.

Route prefixes Length = 1
* 1*,a
il Length=2)
b | 0100* (11%,2)
c | 01110* ((10* : /I;)) Length =3
Length=4 01*, "
d | 100* (00*,-) (100* 9
(0100*,b) (111*)
e | 1100* (0111*,h) (001*,)
- (1100*,6)
f 10 (1011*1)4)
(0001*,-) Length=5
g | 101110 Length =6
h lor (01110*,0)
(101110,9)
i |111* (000111,K)
j 1001*

In fa(':t, binary search on prefix lengths is deemed an efficient solution for routing
table lookup. However, each hash probe takes at |east one memory access, which is
significant at gigabit speeds. Thus, several variants of binary search on prefix
lengths have been developed to reduce the average number of hash probes. For
example, a heuristic approach presented in [9] changes the tree-shaped search pattern
according to the address space covered by all route prefixesin ahash table. That is,

a table with more addresses covered by route prefixes contained in the table is placed

closer to the tree root. The binary tree of this approach for the example route
prefixes is depicted in Fig. 1.2(a). In this figure, node / represents a table that
consists of all prefixes with length /. Clearly, this introduces asymmetry into the
binary tree. While reducing the average lookup performance, some query packets
could degenerate towards linear search, which is undesirable. Also, incremental
update (insertion or deletion of a route prefix) may require reconstructing the search
tree in order to optimize the average performance. Another heuristic approach
presented in [9] is to build a useful asymmetric tree based on a weighting function
which is defined to be the number of entries in atable. As a consequence, a table
with more route prefixes is placed closer to the tree root. However, the worst case
bound has to be satisfied. Consider the example route prefixesillustrated in Fig. 1.1.
Assume that Wis equal to 6 and thus the worst case bound is 3. The weights of
tables 1, 2, 3,4,5 and 6 are 1, 2, 3, 2, 1, and 2, respectively. Therefore, table 3 is
chosen to be the tree root. It is not hard to see that the worst case bound is violated
if we choose either table 4 or table 6 to be the |eft child of table 3. Therefore, table 5
is the only choice to be the left child of table 3. The result is shown in Fig. 1.2(b).
Clearly, such an approach also needs to reconstruct the tree after some route prefixes
are inserted or removed. In the next section, we present a simple algorithm, called
multi-way search on prefix lengths, to improve the average performance without
sacrificing the worst case performance and changing the tree-shaped pattern as route

prefixes are altered.

(a) Maximize addresses covered. (b) Maximize entries while
keeping the
worst case bound.

Fig. 1.2. Asymmetric search trees generated respectively by two heuristic
approaches for the example route prefixes.

1.4, MULTI-WAY SEARCH ON PREFIX
LENGTHS

Recall that, for the binary search on prefix lengths, a route prefix in table 7 will
place a marker in an ancestor node if and only if the node representing table / liesin
the left sub-tree of the ancestor node. As an example, consider a 21-bit long route
prefix F in the IPv4 protocol. Suppose that a complete binary tree is constructed
based on prefix lengths as shown in Fig. 1.3(a). It isclear that route prefix Fin node
21 places markersin node 20 and 16. Assume that no other route prefixes create the
same markers as . For an address A whose longest matching prefix is F, the search
process in binary search on prefix lengths will traverse nodes 16, 24, 20, 22, and 21 in
sequence. That is, five hash probes are needed. However, we found that the search
time can be reduced if there are links in between nodes 16 and 20 and between nodes
20 and 21 so that the search process can directly move through these three nodes to
find the longest matching prefix. To achieve this, we maintain a multi-way search

tree structure.

ICHICHICHICHIIICHICICHIICICPICY,

@ (b)
Fig. 1.3. (a) Binary search and (b) 3-way search on prefix lengthsin IPv4 protocol.

For ease of description, we consider the 3-way search tree structure shown in Fig.
1.3(b) in the following. Similar to binary search on prefix lengths, we first construct
binary tree and then recursively create markers for route prefixes. Two types of
markers, i.e. L-marker and R-marker, are employed in the 3-way tree structure. Thus,
each marker consists of a prefix value and a 1-bit state to indicate which type this
marker is. To build the third branch of an internal node and create markers for each

route prefix, we follow the conditions described below. Consider anode / and its | eft

sub-tree with root node j. Let G/ denote the set consisting of node j and al the

nodes in its left sub-tree. Similarly, let G’ represent the set of nodes in the right

sub-tree of node j. For every route prefix in a node that belongsto G/, we place an

L-marker for this route prefix in node /, as depicted in Fig. 1.4(a). For any route
prefix in anode belongingto G/, we place an Rmarker for this route prefix in node i
if there does not exist an L-marker having identical prefix value in that node. In
addition, we build a link from node / to the root node of the right sub-tree of node J,
i.e. the third branch of node /, as shown in Fig. 1.4(b). For example, refer to Fig.
1.3(b), a route prefix in node 26 will create an L-marker in node 16 and an ”Rmarker
in node 24 if no other L-markers in that node have the same prefix value. A link is
constructed from node 24 to node 26 so that, when an Rmarker is found in node 24,
the search process can directly move to probe node 26. Notice that L-marker is
identical to that generated by binary search on prefix lengths and ”maker is used to

speedup the search time.

The search process starts to probe the root node of the entire 3-way search tree.
If a “no match” is returned, we move to its rightmost child. If an Rmarker is
matched, we move to its middle child. Otherwise, probe its leftmost child. The
process terminates whenever a leaf node is probed. The pseudo program of the

3-way search algorithm is described in Fig. 1.5.

To simplify incremental update, we suggest constructing a complete tree that
consists of all possible prefix lengths (like the one shown in Fig. 1.3(b)). Toinsert a
new route prefix, one can simply place the route prefix in the appropriate table,
generate necessary markers and perform pre-computations for these markers. If the
inserted route prefix generates an L-marker that is identical to an ”Rmarker generated
by other prefixes, then the originad Rmarker becomes void. Notice that some
existing markers may have to change their best matching prefixes when a new route

prefix isinserted. In other words, we have to verify whether or not the inserted route

prefix is the best matching prefix of a marker if the original best matching prefix of

Construction
of RRrmarkers

Construction
of L-markers

Fig. 1.4. (a) Construction of L-marker in node / for every route prefix in a node
belonging to set G/ . (b) Construction of Rmarker in node / for any route prefix in a node

belongingto set G/.

the maker is a prefix of the inserted one. One can utilize the original tree to
accomplish this. For example, suppose a route prefix F of length L isto be inserted.
A necessary condition for a marker to change its best matching prefix is that Fis a
prefix of the marker. Assume that the length of the marker isL+k The marker can
be found as long as all 2¥ possible combinations are searched. Another method for
updating the best matching prefixes of markers is to first find all route prefixes that
have F as their prefix and then change best matching prefixes for corresponding

markers.

To delete a route prefix, one should remove the route prefix, its markers, and

update the best matching prefixes of those markers that have the deleted route prefix

as their best matching prefixes. Assume that a route prefix F of length L is to be
deleted. Also, let H be the longest route prefix that is a prefix of £, Any marker
that has F as the best matching prefix must change it to H. All the markers that
potentially have to change their best matching prefixes can be found with the same
process as F isto be inserted. To determine H, one can search all tables of length

smaller than L.

Given a 3-way search tree and suppose that each node in the tree is a hash table consisting
of route prefixes of identical length. ,@ @

Input: Query address A//’v
Output: Longest @ery address A @W

Variable: Tree'snode X
he def

I nitializati ! b(treeand Fast

Whlle(nodeX|s @
Probe node X to find th @

&

Update the longest ma

L-marker; (A) (B)
Fig. |.6'q8F Xway SIS SPilPERR€R 3 prefix lengths in IPv4 protocol.
}

Fig.1.5. The pseudo program of the 3-way search algorithm.

Obvioudly, the concept of 3-way search tree can be generalized to an arbitrary
k-way tree structure. Fig. 1.6 shows the 4-way and 5-way search trees for IPv4 route
prefixes. A directed link from node 16 to node 18 means that a route prefix or a
marker of length 18 places a marker in node 16 and there is no other route prefixes or
markers of length longer than 19 that places the same marker in node 16. Of course,

for the 4-way (and 5-way) search tree, we have to use two bits to distinguish three

(and four, respectively) different markers and guide the search process. It isnot hard
to see that the maximal kis five for 32-bit IPv4 addresses and seven for 128-bit IPv6
addresses. Basically, our proposed algorithm is so simple that it does not increase
the complexity in constructing the search tree and in memory requirement. In the
next section, we compare the average lookup performance of our proposed scheme
with that in binary search on prefix lengths through experiments on real backbone

routing tables.

|.5. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of our proposed
algorithms and compare with the binary search scheme on prefix lengths in terms of
the average number of hash probes. Four backbone routing tables in PAIX, AADS,
MAE, and MCVAX are collected from the IPMA project for the experiments
[13]-[14], as shown in Table I.1. To measure the average number of hash probes
required, we consider querying all possible addresses that are created respectively
from the non-overlapping intervals delimited by given route prefixes. Note that each
route prefix has two end points and the collection of all the end points will divide the
entire address space into a set of non-overlapping intervals. The lookup results for
these algorithms are summarized in Table 1.1. The results show that the average
number of probes required in the binary search on prefix lengths is close to the
theoretical bound in the worst case, i.e. logW, However, our proposed 3-way search
algorithm significantly reduces the average lookup time by a factor of more than 21%
for MCVAX routing table and 37% for other tables. As can be seen from the

numbers, the further improvement of either 4-way or 5-way search is not as

significant as the improvement obtained from the 3-way search. Therefore, our

suggestion is to use the 3-way search algorithm to reduce the update complexity when

route prefixes change.

It should be noted that the improvement in the MCVAX routing table is less than

Table1.1. Comparison of average number of probes required in the binary search and our

proposed multi-way search algorithms on prefix lengths for four backbone routing tables.

Routing | Number of Average number of probes
table prefixes | Binary search | 3-way search | 4-way search | 5-way search
PAIX 21936 4.8611 3.0569 2.8377 2.7911
MAE 42290 4.7053 2.9759 2.8466 2.8016
AADS 40723 4.7284 2.9846 2.8253 2.7943

those in other tables. Thisis because that there is nearly half of 32-bit route prefixes
and thus nearly half of querying addresses needs the worst-case number of probes to

find the longest matching prefix.

|.6. CONCLUSION

We have presented in this report a simple multi-way search algorithm on prefix
lengths to improve the average performance of the binary search scheme while
keeping the same worst-case performance in IP routing table lookup. Through
experiments on real backbone routing tables, we found that the improvement can be
more than 21% for MCVAX routing table and 37% for other tables. Since the gain
increases as the depth of the search tree increases (which is induced by longer address
length), we believe that our proposed algorithm achieves more improvement for
128-bit IPv6 routing table lookup. Further, one can apply our proposed algorithm to

improve the average search time for tuple space-based multi-field packet

classification [11]-[12].

Part |];

STRING MATCHING ALGORITHMS
AND I TS HARDWARE

|MPLEMENTATION

|1.1. ABSTRACT

String matching is a performance bottleneck in the pattern-based load balancing
or QoS guarantee in a web switch. This problem can be solved by a suitable
hardware of string matching. Thus, we survey the related algorithms and hardware
implementation in Part |1 of this project, and try to propose the suitable algorithm and
architecture for the string matching. According to our survey and analysis, we
conclude that the multiple pattern and wildcard are the mandatory requirements for
string matching, and bit paralel are the most suitable algorithm for hardware

implementation.

|1.2. INTRODUCTION

Pattern-based load balancing or QoS guarantee requires the deep content
inspection of packet and the content is variable in the length and start position, thus
the string matching is the suitable technique for this content inspection. From the
previous related papers [15-16] and based on our observation, we can classify the

string matching into the following taxonomy:

Dynamic programming algorithms: use the dynamic programming algorithm to
compute the pattern and text distance of similarity. This kind of agorithms is no

need the preprocessing phrase for the patterns.

Filter algorithms: use the heuristic skipping technique to save the comparison of
characters. This kind of agorithms needs the preprocessing phrase to build the

skipping tables.

Automaton algorithms: Automaton algorithms transfer the patterns into the
automaton in preprocessing phrase, and in the search phrase it traverse the automaton
to find a match. The automaton traversing is implemented as a lookup processing

from the transition table with the corresponding state and character.

Bit parallel algorithms: This kind of algorithms uses bit vector to simulate the
automaton, it converts the characters of patterns to the bit occurrence table in the
preprocessing phrase. In the searching phrase, it lookups current characters of text
in occurrence table and perform the bitwise operation with a state mask. If thereisa

matching the corresponding bit of state mask will be zero or one.

The string matching is the magor performance bottleneck, thus the hardware
solution is useful to boost the speed. In this project, we also survey existing the
hardware implementations of string matching agorithms. According to our study,
there are three architecture have been proposed. They are (1) systolic architecture,
(2) pipeline and paralel architecture, (3) reconfigurable architecture. However, the
existing hardware implementation is not suitable for string matching agorithms at all.
In addition, we have the analysis of string matching requirements, the related
algorithms and its hardware implementation so that we can conclude that the bit
paralel string-matching agorithm is a suitable algorithm and hardware

implementation for string matching.

Part Il of this project is organized as follows. Section 11.2 studies some

important string matching algorithms as our taxonomy. Section 11.3 surveys existing

hardware implementation of string matching algorithm. Section 11.4 discusses the
requirements of string matching, and proposed the suitable hardware architecture.

Finally, Section 11.5 is our conclusion.

11.3. STRING MATCHING ALGORITHM

There are many string matching algorithms have been widely discussed in a
recent several decade, but only some on-line string matching algorithms that
preprocessing of pattern are suitable for load balancing and QoS guarantee, the
preprocessing of text is suitable for information retrieval. In this section we study
related string matching algorithms in detail and classify them as our previous

taxonomy.

A.1 DYNAMIC PROGRAMMING ALGORITHM

Dynamic programming algorithm was proposed in the [17], which uses the
dynamic programming array to compute the result of string matching. At first, it
forms an n*m matrix of text and pattern, n is the length of text and m is length of
pattern. This algorithm intends to find the distance-similarity between pattern and text,
if the distance is less, the similarity is more. The common distance value is the edit
distance; the edit distance is the mismatching number between the pattern and of text.
One edit distance value can be reduced by one operation of insertion, deletion or
substitution. The following is aformula of edit distance computation, D denote edit
distance matrix, and /, j are the index of text x and pattern y. If x; is equa y; in
character, then current D(7,j) is set to the left upper D(i-1,/-1) value, otherwise D(i,j) is
set to the minimum value of the left upper (i-1,/-1), left D(i-1,/) or upper D(i,j-1)

value that plus one.

D;o=i
Dyj=J
D(y) = if (x=y) thenD, ., else 1 + min(D;;;,D;;.,D;.1;..)

Dynamic programming algorithm computes edit distance from left top to right
bottom cells, and fill the cell one by one. The fina result is the most right bottom
cell. This algorithm has worst case O(n) and not need the preprocessing of pattern.
Because its matrix is fixed size, and its best case is its worst-case time complexity.
This algorithm is only suitable for the application with short pattern and text.

Fig. I1.1 is a dynamic programming example; the text is “search” and pattern is
“seerh”. The most right bottom cell is 2, which means the pattern and the text
having two differences of edit distance. That needs two operation of insertion,

deletion or substitution to let the pattern to be equal the text.

S| |||’
ga|/~h|W|N|FL|O
AIWIN|IP|IO(FRL|®
WINIFPIOIRPIN|®D
WIN|IFPIPINW|D
NIFPININWIA~|T
NINWW|h OO
N Wb lOWO |

Fig. 1.1, A Dynamic programming example.

A.2 AUTOMATON ALGORITHMS

Automaton algorithms search the text by traversing the automaton graph. The
automaton is built from the pattern. For the simple automaton algorithm, it builds the
minimal deterministic automaton to recognizing the single pattern; the pattern is
converted into an automaton in this preprocessing phrase. Moreover, for the
character that is not in the string path, automaton will has a state transition to the
initial state, but if there is a repeated prefix, it will has a state transition by skipping
the prefix state. Fig 1.2 illustrates an automaton for pattern “ababc’. The
searching phrase is traversing its automata if there is existed a path. When the fina

state is reach, then a string matching is report. It has worst case O(n) for the searching

time, and it has the same states as the length of pattern. Thus, this preprocessing

timeis O(m) in preprocessing time.

In addition to the basic automaton algorithm, we also survey three advanced
automaton algorithms in this section, that includes Aho-Corasick[18], reverse

factor[19] and multiBDM[20] algorithms.

a
Sarta@ b@a
a

Fig. [1.2. Simple automaton for pattern “ababc”.

A.2.1. AHO-CROASICK ALGORITHM

Aho-Croasick is a multiple patterns string matching algorithm. In the
preprocessing phrase, it builds three tables from the patterns, that includes goto table:
g(state, t;), failure table: f(state) and output table: output(state). The “goto” table is
easy to build, each character of pattern is an edge of automaton and the patterns share
the same edge if they have same prefix. The output table is built from marked the
state that it should output a string matching. When a mismatch is occurred, the next
state will be the state by looking the corresponding failure table. Failure table is
computed from that the length of current longest suffix that is also a prefix. This

means it can skip the prefix comparison if a prefix is found.

In the searching phrase, each text character is inputted to g(state, a), if its next

state output(state) is not empty, it means that the pattern is matching. If its next state

failsto be found, g(f(state), ai), and it checks output(state) again. This algorithm has
worst case O(n) for searching multiple patterns. The following is an example, the
patterns are { he, she, his, hers}, if the input text is “ushers’. In the goto table g(4,
€)=5, The output(5) has “she” and “he’. But when g(5, r), there is not next state in
goto table, then afailure is occurred. Sine failure table f(5)=2, it will lookup the goto
table again, but g(2, r)=8 , and output(8) is not output, thus no string matching is

reported in this case.

Goto Function Output Function
@h@e@rs@ i Output(i)
~(h,s) he
i s she,he
@ @ =
s h e
ORONO

hers
Failure Function

O |N|[W]|DN

i |1 2 3 4 5 6 7 8 9

Fiylo |o |o |1 |2 |o |3 |o |3

Fig. 11.3. An Aho-Corasick example.

A.2.2. ReverseFactor Algorithm

Reverse factor algorithm is also called suffix automaton algorithm; the suffix
automaton is a DAWG (Directed Acyclic Word Graph) that match a string from right
to left in atext window, and the text windows is dlide from left to right along with the
input text. The suffix automaton is built from reversed pattern in the preprocessing
phase. Fig. I1.4 demonstrates an suffix automaton for pattern P ={ aabbaab}, firstly we
reverse pattern P ={baabbaa}, and each character is a edge, then we add an initial
state and empty / transitions to all other states. Thisis a NFA and showed on the
top automaton of Fig. I11.4. The second step, we build the bottom automaton of Fig.

11.4 using subset construction.

In the searching phase, the suffix automaton is used to save the comparison when
amismatch occursin the text window. Thisagorithm read the text characters of the
text window from right to left, and moves along the automaton. And the path in the
automaton from the initial state to the final state is a knowing the longest prefix, that
used to guarantee safe skip for a mismatch. When there is a longest prefix in a
mismatch path, this algorithm aligns with the longest prefix, not skips all text window.
For example, if the text is the “abbabaabbaab”, the above suffix automaton has a
mismatch path “baaba’, there is a longest prefix aab in current path, thus the text

window is slide to align the aab prefix.

O,

/

0000 ® 0 ® ¢

/

2,3,6,7
a

b
b a a b b a a
01234567 STIMONONONE

Fig. I1.4. A suffix automaton example.

A.2.3. MULTIBDM ALGORITHM

The multiple backward DAWG (MultiBDM) algorithm combines the suffix
automaton and Aho-Corasick automaton, thus it have advantage to use their heuristic
techniques. In the preprocessing phrase, the Aho-Corasick automaton and suffix

automaton will be built as the fundamental algorithms.

In search phrase, the MultiBDM agorithm scans DAWG from right to left to
skip some comparison in a text window, then scans Aho-Corasick automaton to
checks the pattern match. There are two cases in the scanning DAWG. The case 1:

Scan DAWG is stopped before critical position critpos, if Scan DAWG found a

longest prefix pre then it updates critpos and repeat the Scan DAWG again. The
case 2: Scan_DAWG reaches the critical position critpos, then it does Scan_AC from
critical position critpos, and read until end window pos. If the recognized pre>1inv2,
then Scan_AC continue to read, otherwise restart a Scan DAWG. The notation /min
is the minimal length of patterns, posis end of the window, preis the longest prefix
that reads by Scan DAW, u is a prefix of the window that reads by Scan AC and

critposis critical position, end of w.

Fig. I1.5 is an example for patterns { abbb, ababbba}, the right automaton is the
Aho-Corasick automaton and the left automaton is the suffix automaton. The suffix
automaton is built from the reverse cut patterns { bbba, baba}, and the dash line is the
failure link in the Aho-Corasick automaton. The following three steps show a

searching process over the text * abbabbababbba’.

Step 1: [abba]bbababbba, pos= 4, critpos= 0. Initidly, it does Scan DAWG to
read {a,b}, if we fail to read {b} ,and pre={a}, and critposis not reached. The pre<

Imin/2, thus restart a Scan_ DAWG.

Step 2: abb[abba]babbba, pos =7, critpos = 4. Firstly, it does Scan DAWG to
read { a, b}, if wefail toread { b}, and new pre={a}, critposis not reached. The pre<

Imin/2, thus restart anew Scan_ DAWG.

Step 3: abbabb[abab]bba with pos=10, critpos = 7. Firstly the Scan DAWG
reads [b, a, b, a], pre={a, b, a, b}, and critposis reached. It belongsto case 2, and
Scan ACreads{a, b, a b}, and recognized pre >= Imin /2, thus continue to read {b,

b} and report a match, and then read {a} and report second match again.

b @b@b@aa4 b@b@
0o * OYORO
"52@®%*7 HONMONOEOR

Fig. 11.5. A MultiBDM example.

A.3 REGULAR EXPRESSION ALGORITHM

Regular expression (RE) is a generalized string description with basic string,
kleene star (*), concatenation and union (J). Each RE has a corresponding finite
automaton (FA), the FA can be nondeterministic or deterministic, the nondeterministic
finite automaton (NFA) allows more then one next transition in the state transition,
and its conversion from RE to NFA requires m states. The deterministic finite
automaton (DFA) allows only one next transition, DFA may have up to 2" states, and

thus the DFA requires larger space to store its transition state than NFA.

If we use the DFA for string matching, in preprocessing phrase, a DFA is built
from the pattern by using the subset construction, and because this method is famous
in formal language textbook, we omit the detail introduction in here. In the
searching phrase, we read the text and traverse the DFA to find amatch, if afinal state
is reached, it we output a match. If we use the NFA, it needs to extra technique to
distinguish the multiple transitions for an input. There are two NFA constructions
have been proposed, Thompson's construction [21] and Glushkov’s construction,
Thompson's construction produces up to 2m states and it isnot / free /| NFA.
Glushkov’s construction produces exactly mtl states and it is / NFA. Thus the
Glushkov’'s construction is superior to the Thompson's construction. And we

demonstrate the Glushkov’s construction only in section in Fig. 11.6.

Glushkov’s construction has m+1 states, and marks the states with order number
initially, then it uses the First (RE), Last (RE), Follow (RE, x), and Empty (RE)
functions to build the NFA. The following is an example for RE =
((AT|IGA((AGIAAA)). We firss maks RE with order number as
(A1T2|G3A4((AsGelA7AgAg) 9), the order number is the state number in the NFA.
Then we mark theinitial state by using First (RE), the First (RE) is the set of positions
at which the reading can be started. For example: First (A1T2|GsA4((AsGs|A7AsAg)
9)={1,3}. After mask the initial state, we can marked the final state by using
Last(RE), the Last(RE) is the set of positions at which a string can be recognized. For
instant: Last (A1T2|GsA4((AsGslA7AsAg) 9)={2 ,4 6 ,9 }. Then we compute the
Follow (RE, x) for each state x, the Follow (RE, x) is the al positions in RE
accessible from state x, for instance: Follow ((A1T2|GsA4((AsGelA7AsA0) 9)),6)=
{7,5}. This NFA is much smaller the Thompson NFA, and in the searching phrase,
it only requires to store the related Follow (RE, x) if there are more than one next

transition.

G, A, As

A
@ Al@Tz 2 As@ 4 4 A5®AGB 6 A7 @AS Ag 9
5

A7 A7
Fig. I1.6. A Glushkov’s construction example.

A.4 FILTER ALGORITHM
Filter algorithm directly compares the pattern with text character by characters.

This kind of algorithm has some heuristic technique to save the comparison, the first

one is Knuth-Morris-Pratt(KMP)[22], it is a simple algorithm and utilize the prefix
substring only. The second is Boyer—-Moore[22] algorithm, which uses bad
character and good suffix shift for a mismatch. And the third algorithm is counting

filter which uses counting technique to find out the similar text portion with pattern.

A.4.1l. KMP ALGORITHM

KMP is a single pattern algorithm and performs the left to right scan, it consists
of two phases. In preprocessing phase it computes the prefix function for the pattern
P. and in the searching phase, the pattern is searched against text with the prefix table.
Table 1 is a prefix table for pattern ATCACATCATCA. Each cel of prefix row
records the current suffix length that is also a prefix.

In the searching phrase, the pattern is compared against the text character by
character. If a mismatch occurs, it have two cases for the following actions. Case
1 : when no prefix is found, it slides the pattern to right with the compared length.
Case 2 : when a prefix is found at current suffix, it dides the pattern to right with
compared length minus the prefix length. Table 2 is an example for the KMP string
matching, when a mismatch occurs at position 3, ATC has no prefix, thustherow 4 is
thecasel. Therow 5 and row 6 are the case 2, because they have prefix A and ATC.

Case 2 is shift less than case 1.

TABLE I1.1. The KMP prefix table.

Patten | A |T |C|A|C|A|T |C|A|T|C|A
Prefix |O |O |O |2 |0 |1 |2 |3 |4 |2 |3 |4

TABLE I11.2. A KMP example.

Postion |1 (2|3 |4 |5|6|7|8|9|10|11|12|13(14|15|16|17|18|19| 20

21

22

Text |A|T|G|A|T|C|A|T|C|A|C|A|T|C|G|T |A|JA]|A|A

pattern |A|T|C|A|C|A|T|C|A|T |C

Case 1l A|T|IC|IA|C|A|T |C|A|T|C
Case?2 AlT|C|A|C | A |T|C|A|T|C
Case?2 A|T|C|A|C|A|T|C|A

A.4.2. BOYER-MOORE ALGORITHM

This algorithm uses three techniques, which includes (1) scans from right to left
in a pattern length window, (2) uses bad character shift rule and (3) computes last
occurrence and good suffix function. In preprocessing phrase, it builds the bad
character and good suffix shift table. The bad character shift table records the last
occurrence position for each aphabet; Table 11.3 is an example for pattern

ATCACATCATCA.

TABLE 11.3. The Boyer-Moore bad character table.

Alphabet A G C T

Bad char 12 0 1 10

Table 1.4 is agood suffix table, it has two cases to compute the shift value, case
1 stores the rightmost position of a rightmost substring that is the right suffix
substring at current position (not include the current character). Case 2 records the
length of prefix is aso a suffix at current suffix length from right to left. The good

suffix shift is the pattern length m minus the maximum case 1 or case 2.

TABLE I1.4. The Boyer-Moore good suffix table.

Good Suffix (1 |2 |3 |4 |5 |6 (7 |8 |9 |10 |11 |12

Pattern A |T |C|A |C|A|T |C A |T |C A
Casel o (0 |0 (O (O |O |9 |O |O |6 |1 1n
Case 2 4 14 |4 |4 (4 |4 |4 (4 |1 |1 (1 |O

Good suffix (8 |8 |8 |8 |8 |8 |3 |8 |11 |6 |11 |1

In searching phrase, when a mismatch occurs, it shift text by some shift amount,
the shift amount = max(bad_char_shift, good suffix_shift). It checks the bad
character table and good suffix table. The left shift amount is the maximum value
from these two tables. If always shift by one, its worst case searching time is O(hm).
But shift by more than one is possible, and it has best case O(n/m). During the
searching, the pattern windows with text by dliding from left to right, but in the

pattern windows, pattern compares with text from right to left.

Table 11.5 is an example for Boyer Moore string matching. When a
mismatching occurs at “A” character in row 2, the bad character shift value is 2 and
good suffix shift valueis 1, thus it chooses the bad character shift, and shift to right by

2.

TABLE I1.5. A Boyer-Moore string matching example.

22

23

24

Text |G|A|T|C|G|A|T|C|A|C|A|T|C|A|T|C|A|C|G|A A

Patten | A| T|C|A|C|A|T|C|A|T |C |A

Bad
A|T|C|IA|C|A|T|C|A|T |C|A
char
Good
A|T|C|A|C|A|T|C]|JA |T|C|A
suffix

A.4.3. COUNTING FILTER

Counting filter increases the matched counter when a character of the text
window appears in patterns. And if the matched counter is equal to pattern’s length
that indicates the text windows might be matched with pattern, thus it verify it by a
exact comparison. In the searching phrase, each aphabet ¢ in pattern requires a

counter A[c] to maintain the difference between pattern and text window, and a

matched counter MA to indicate whether a matching might be occur.

In preprocessing phrase, A[c] is set to the number that ¢ appears in the pattern
and MA issetto zero. In searching phrase, we first processinitial text windows, the
MA=MA+1 if A[t] > 0 and A[tj] -1 after processing MA. Then for moving in a
character, we MA=MA+1 if moving in A[t] > 0 and A[tj] -1 after processing moving
in, and for moving out a character, we MA=MA-1 if moving out A[t-m-k] > 0 and
Alt-m-k] +1 after processing moving out. There might be a possible match if MA =
length of pattern. Table 11.6 is a example for search a pattern “aoha‘ over the text
window “helloa’. Initialy, it set A[a]=2, A[l]=1, A[o]=1, A[h]=1, A[€]=0, MA = 0.
And the result is that, in the row 6 and column 7, the MA=4 meansthat there might be

amatch, thus we can verified this text windows using the exact comparison.

TABLE I1.6. A Counting Filter example.

Initial Ald=2 |A[l]=1 |A[o=1 |[A[h=1 |A[g=0 |MA=0
Readh |A[d=2 |A[ll=1 |A[o]=1 |A[h=0 |A[g=0 |[MA=1
Reade |A[d=2 |A[ll=1 |A[o]=1 |A[h=0 |A[g=1 |[MA=1
Read| |A[d=2 |A[l]=0 |A[o]=1 |A[h=0 |A[g=1 |MA=2
Read| |Ald=2 |A[ll=1 |A[o]=1 |A[h=0 |A[g=1 |[MA=2
Reado |A[d=2 |A[ll=1 |A[0]=0 |A[h=0 |A[g=1 |[MA=3
Reada |Ald=1 |A[l]=1 |A[0]=0 |A[h=0 |[A[g=1 |MA=4

This filter algorithm can aso be applied to multiple patterns with a dight
modification. Multiple A[c] of multiple patterns can be packed into a computer words
and update them in one iteration, and the multiple MA can be packet into a computer

word aswell.

A.5 BIT PARALLEL ALGORITHM

Bit Parallel algorithms use the bit state vector to simulate the nondeterministic
finite automaton (NFA) in string matching, thus bit parallel algorithms are powerful
as the automaton algorithms, more over the bit parallel are easier to handle and the
class, alowing error and multiple pattern features of string matching. In bit parallel
algorithm, each bit of the state vector represents a state in NFA. Bit pardle
normally requires to build occurrence table for the patterns in preprocessing phrase,
the occurrence table store the occurring bit vector of pattern for each alphabet. In
the searching phrase, for each reading of character in text, it fetches the bit vector
from occurrence table and does the bitwise operation with current state vector to
produce a new state vector. The new state vector represents the current matched

status. The shift-and is basic bit paralle agorithm, in its searching phrase, its

updated functionis D =((D<<1|0™'1) & Ht;]. Where D iscurrent state mask,

D' is next state vector, m is length of pattern. B is occurrence table, and t; is

current character of text.

In this section, we survey significant bit-parallel agorithms that include shift-or
[25], advanced bit parallel methods [26] and bit parallel suffix automaton [27], and bit
paralel regular expression [28]. The basic idea of shift-or is similar to shift-and but
with different bitwise operation and different state vector representation. And the

advanced bit parallel methods are showed by Sun-Manber that modified shift-or for

long pattern, approximation, allowing classes, multiple patterns. The algorithm
simulates suffix automaton in bit parallel, and the NFA also can be smulated by a bit

paralel method for the regular expression.

A.5.1. SHIFT-OR ALGORITHM

Shift-or has preprocessing and searching phrase. In the preprocessing phrase, it
builds a pattern occurrence table 7[x]. The row of T is the number of all possible
alphabets that might appear in the text, and the column of T is the length of pattern.
If an alphabet x appear in the corresponding position of pattern, then set [x] bit to 0,

otherwiseto 1.

Fig. 1.7 is a processing to construct the 7. Firstly, the pattern “ababc” will be
revereto “chaba’. Andfindingthe T[al, 74|, T[d and T[d|, if the“chaba’ appear in
the corresponding bit, set it to 0, otherwiseto setto 1. For example 7] 4] isin the bit

3 and bit 5 of pattern “cbaba’, thus 7] &] = 11010.

reverse
chaba

T[a] = 11010
T[b] = 10101
T[c] = 01111
T[d] = 11111

ababc

Fig. 11.7. An Shift-or occurrence table example.

In the searching phrase, when a character ¢; of text is inputted, a bit vector State;
has a bitwise operation State; = (statej.; << b) | 7[#] to update the State;, in the exact
matching the shifted amount b is 1. When the leftmost bit of State; is zero that
means a matching is found. Table 11.7 is a searching example for pattern = ababc and

text = abdabababc. In the last column of State; is 01111, the leftmost bit is O, that

means it finds a matching.

TABLE I1.7. A Shift-or example.

Text a b d a b a b a b c
Tl 11010 10101 11111 11010 10101 11010 10101 11010 10101 | 01111
State;.q <<

11110 11100 11010 11110 11100 11010 10100 | 01010 10100 | 01010
b
State;

(State;; << | 11110 | 11101 | 11111 | 11110 | 11101 | 11010 | 10101 | 11010 | 10101 | 01111
b| Tt])

<< 11100 | 11020 | 11110 | 11100 | 11010 | 10100 | 01010 | 10100 | 01010

A.5.2. ADVANCED BIT PARALLEL ALGORITHMS

The advanced bit paralel can be applied to the shift-and or shift-or agorithms
and that includes the long pattern, class and multiple patterns features. For handling
the long pattern, we need to partitions pattern p into subpatterns p;, and builds an array
of D and B, process each part with basic agorithm, and if p; is found than it process
pi+1. For handling the class, the class is that a character of pattern can represent many
aphabets. This method needs to modify B table only, and have the ith bit set for al
chars belonging to /th position in pattern. As for handling multiple pattern, we have
two methods. The first way is that we can interleaves patterns and build the table in
preprocessing phrase, and no need to modify the updated function. In the searching
phrase, we shift r bit for each update for D and it just concatenate, where r is the
number of patterns. The second method is that we shift 1 bit, but we need to modify

the update functionas D = (D <<1) & (1" '0)r .

A.5.3. BIT PARALLEL FOR SUFFIX AUTOMATON ALGORITHM

This algorithm uses bit parallel to simulate the suffix automaton algorithm. Itis

able to handle class, multiple patterns, and alow errors, and faster than suffix

automaton from 20% to 25%, and its updated function isD = D& Ht ;1<<1 which

is similar to shift-and algorithm. Table 118 is an example for pattern = {aabbaab},

text = {abbabasbbaab}, D=1111111, B={{a,1100110} { b,0011001}}, =7, last = 7,

J=7.
TABLE 11.8. Anexample of bit parallel for suffix automaton.

Text D&B[#]<<1 D’ J Last
1111111

[abbaba(a)] bbaab 1100110 6 6
1100110
1001100

[abbab(aa)] bbaab 1000100 5 5
1100110
0010000

[abba(baa)] bbaab 0001000 4 5
1100110
0010000

[abb(abaa)] bbaab 0000000 3 5
1100110
1111111

Abbab[aabbaa(b)] 0011001 6 7
0011001
0110010

Abbab[aabba(ab)] 0100010 5 6
1100110

1000100

Abbab[agbb(ash)] 1000100 4 4
1100110
0001000

Abbab[agb(baab)] 0001000 3 4
0011001
0010000

Abbab[aa(bbaab)] 0010000 2 4
0011001
0100000

Abbab[a(abbaah)] 0100000 2 4
1100110
1000000

Abbab[(aabbaah)] 1000000 0 4
1100110

A.5.4. BIT PARALLEL FOR REGULAR EXPRESSION

Bit parale can simulate Thompson and Glushkov NFA to matching the regular

expression patterns. Thompson NFA bit paralel updated functions are
D=((D<<1]0™1)& HAt;] and D = D] functions. Where D is Sate mask, Bis
Occurrence Table, mis string length, ¢is current character, and £ D] is null-closure

function that is reachable state from D with null input. The Glushkov NFA Bit

paralel has two updated function 7] D] = UFo//ow(/) andD =T[D] & Ht] inits

iD
searching phrase. T is a table that the states can be reached from an active state.

The Band D are the same as the Thompson NFA bit parallel.

1.4 HARDWARE |IMPLEMENTATION FOR
STRING MATCHING

There are some existing hardware solutions for string matching agorithm. In
our study, we classify them into the three categories; they include systolic array,
parallel and pipeline hardware, and reconfigurable implementations.

B.1. SysrtoLic ARRAY HARDWARE | MPLEMENTATION

Systolic array is suitable to implement the dynamic programming algorithm, the
[29], [30], [31] and [32] has proposed the systolic array architecture for dynamic
programming algorithms. Systolic array has the advantages that (1) does not need
the preprocessing time and extra space (2) the search time is constant. However its
drawbacks are that include (1) each cell systolic array require larger circuit than other
agorithms' control circuits. (2) Its worst case is its best case, thus it is hard to
improve the performance, (3) it cannot perform the string matching for wildcard or

multiple patterns.

In the systolic array architecture of [30], the systolic array consists of n*m
processing element (PE), the nis length of text and mis the length of pattern. Fig
11.8. depicts a PE architecture, each PE can determine edit distance cost from previous
codt, that cost consists of PE's substitution cost Sub=r(A(i)->B(j)), deletion cost
Del=r(A(i)->Null) and insertion cost /ns=r(Null->B(j)). The current PE's edit
distance cost D(i,j) is the minimum value among Qub + D(i-f,j-1) » Del +D(i-1)) -
Ins+D(i,j-1). Input A(i) and B(j) isthe character at / - j index of the text and pattern,
and input D(i-/,j-1) » D(i-1,j) - D(i,j-1) are the left-upper, left and upper edit distance
cost. The final matched result is determined from the D(i,j) of the most right-bottom

PE.

D(-1j:1) 0] D(i,ji-1)

C)(C
) @@

D(i-1,)) @ @ D(i,j)

D(i,j D)

Fig. 11.8. Processing el ement of dynamic programming systolic array.

B.2. PARALLEL AND PIPELINE HARDWARE |MPLEMENTATION
This kind of implementation is applied to the naive string-matching agorithm,
which means no need any heuristics string matching algorithm. This agorithm
accelerates the string matching speed by utilizing hardware parallelism. The [33]
and [34] propose the pipeline and paralel architecture for the naive string matching.
Fig. 1.9 isapipeline and parallel processing example that described in [33]. Firstly,
the input Text: {t1, 12, 13, t4, 15...} is shifted into the shift register S, to compared
with character P1, P2, P3, P4 of the Pattern by using comparator Cp. Then the fina

matching result is accumulated by the and gates.

‘ t1,t2,t3,t4,15...

s | | s | | s | | B
t2 t3 t4 t5
t1 t2 t3 t4
t1 t2 t3
t1 12
t1

pl p2 p3 p4

oo | [ep| [oe] lcp]

L] L]

And And

And

String Matching 0/1?

Fig. 11.9. Pipeline and parallel processing example.
This kind of hardware acceleration has the merits that includes (1) no need the
preprocessing on pattern. (2) Simple algorithm that compared with other heuristic
algorithm, however, its drawbacks are (1) it pays the large circuit for parallelism and

(2) long delay for long patterns.

B.3. RECONFIGURABLE HARDWARE | MPLEMENTATION

This hardware implementation hardwired the string matching circuit and its
patterns directly into the reconfigurable hardware. The [35] and [36] demonstrated
the implementation of regular expression string matching based on the reconfigurable
FPGA architecture. Fig. 11.10 is the technique used in [35], its regular expression
pattern is a(b|c)* and it is hardwired in the reconfigurable circuit in the preprocessing
phrase. In the searching phrase, the matching processing isthat the characters of text
is shifted into the circuit cycle by cycle. After the input is done the final matching
result is reported after the few delayed cycles. The reconfigurable has the advantage
in (1) no need the preprocessing table, and the compact circuit for the small patterns

(2) more flexible than ASIC solution; however the reconfigurable hardware is much

expensive and slower than ASIC solution.

D
A

(il

Fig. 11.10. Reconfigurable hardware accel eration example

Input
character

1.5 DISCUSSION

In this section, we discuss the requirements, and analyze the architecture for

string matching algorithm, then we conclude a suitable algorithm and its hardware

architecture for string matching.

C.1. STRING MATCHING REQUIREMENTS

The functionalities of the string matching have the exact matching, class,

approximate, multiple patterns, wildcard, and regular expression string matching. In

the Snort 1.9, itsrule for string matching has the following fields.

>

>

>

>

Content: search for a pattern in the packet’s payl oad.

Content-list: search for a set of patterns in the packet’s payload.

Offset: modifier for the content option, sets the offset to begin attempting a
pattern match.

Depth: modifier for the content option, sets the maximum search depth for a
pattern match attempt.

Nocase: match the preceding content string with case insensitivity.

Regex: wildcard pattern matching, this is not normal regular expression.

Uricontent: search for a pattern in the URI portion of a packet.

Based on snort and our observation, thus, we can summary the requirements of

string matching as table 9. And we conclude the approximate, class, regular

expression and long pattern is not mandatory in string matching, but the multiple

patterns, wildcard, rea-time and case sensitive are mandatory.

TABLE I11.9. String matching requirements.

Functions Description Requirement
Allow k number of character
Allow Error Maybe
error
) Multiple pattern matching in one
Multiple Pattern ,) Yes
iteration
Class One character represents multiple Mavbe
alphabet i
Wildcard Don't care of multiple characters | Yes
Regular .
, Kleene Star, Concatenation, Or Maybe
Expression
Long Pattern Support long pattern Maybe
Real Time On fly processing Yes
Case Sensitive Alphabet is case insensitive Yes

C.2. RECOMMEND HARDWARE IMPLEMENTATION OF STRING

MATCHING

Fig. 11.11 illustrates the hardware structure for four main string matching
agorithms; (a) Bit parallel agorithm has an occurrence table to store the
preprocessing pattern data, and its control circuit is simplest among other algorithm, it
reads the text and table data to does the bitwise operation in the searching phrase. (b)
Filter algorithm, its control circuit is more complicated than bit parallel, because it
requires reading the good suffix shift table, bad character shift table, and computing
the shift amount for each input character in text. (c) Dynamic programming
algorithm, it has no central control circuit that is distributed in PE circuit as a systolic

array. This array grows as the pattern or text length, thus it has larger circuit size than

other agorithms normally. (d) Automaton Aho-Corasick agorithm, its control
circuit is more slower and larger than bit paralel algorithm, because it requires to
reads goto table, failure table, output table, then does the byte comparison in order to

determine next state and matched status.

| Text
Occurrence Table Control Suffix Teble
Control
Bad Char Table
(a) Bit Parallel — Shift-OR (b) Filter — Boyer Moore
| Text | | Text
- | Goto Table |
= Systolic
3 Array | Shift Table | Control
)
| Output Table |
(c) Dynamic Programming (d) Automaton — Aho Corasick

Fig. 11.11. Four main architecture of string matching algorithms.

Which string matching algorithm is suitable to be implemented in hardware?
We can consider them from three respects-capability, efficiency and implementation
cost. Tablell.10 isasummary of our observation; we summarize the advantage and
disadvantage for string matching algorithms of the hardware implementations. In
our final recommendation, the bit paralel algorithm is recommended for hardware
implementation, because it is a smple and powerful string matching algorithm, it is

able to some heuristic techniques as well.

TABLE 11.10. Analysis of hardware Implementations of string matching algorithms.

Taxonomy Advantage Disadvantage Recommendation
® Not powerful asthe automaton
) Yes (Wesak, no
or bit parallel, support no)
. . multiple pattern
_ ® Optimal average case multiple pattern, and alow
Filter o) and need more
in time complexity error o)
circuit than bit
® Need the adder and subractor
| - . parallel)
in each shifting calculation
® | esspowerful, no support
) multiple pattern and long pattern. | No (suitable for
Dynamic) .)
_ ® No Preprocessing ® Each systolic array cell single and short
Programming .
contain many adder and pattern)
subractor.
® Good worst casein ® Powerful string matching Yes (Strong, simple
time complexity functionalities, the similar to architecture
Bit-Parallel ® Bitwiseoperationin automaton. suitable for
each character ® Patternlengthislimited by bit | hardware
comparison mask length implementation)
® Powerful string matching
| - Yes (Week,
® Good worst casein functionalities _
] . . because it need
time complexity ® Full character comparison for
Automaton more storage and

® Flexiblein pattern
length

each character comparison

® Tablesizeislarger than

Bit-Parallel

lookup time then
bit parallel)

1.6 CONCLUSION

We have a comprehensive survey over the existing the string matching
algorithms and hardware implementations. Based on our observation, we have
identified four type string-matching algorithm that includes dynamic programming,
bit paralld, filter and automaton. The existing string matching hardwares focus on the
systolic array, paralel architecture, and reconfigurable mostly. But these are not
mandatory features that requires in the string matching hardware. String matching
hardware requires the high speed, low cost and powerful functionalities.

In our analysis hardware implementation of four main types of string matching
algorithms, the bit parallel agorithm is strong recommended for the hardware
implementation, because it has the powerful string-matching feature as automaton and

simplest control circuit for hardware implementation.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCE

T. Chiueh and P. Pradhan, “High Performance IP Routing Table Lookup
Using CPU Caching,” in Proc. of IEEE INFOCOM, Apr. 1999.

M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding
Tables for Fast Routing Lookups, ” in Proc. of ACM SIGCOMM’97, 1997.
V. Srinivasan and G. Varghese, “Fast IP Lookups Using Controlled
Prefix Expansion, ” ACM Trans. on Computer Systems, vol. 17, pp. 1 -40,
Feb. 1999.

B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using
Multiway and Multicolumn Search, " IEEE/ACM Trans. on Networking, vol.
7, no. 3, pp. 324-334, June 1999.

S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” [EEE
Journal on Selected Areas in Communications, vol. 17, pp. 1083-1092,
June 1999.

S. Sikka and G. Varghese, “Memory-Efficient State Lookups with Fast
Updates,” 1in Proc. of SIGCOMM, 2000.

P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in hardware at
Memory Access Speeds,” in Proc. of INFOCOM, 1998.

M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “ Scalable High-Speed IP
Routing Table Lookups,” in Proc. of ACM S GCOMM, Sep. 1997.

M. Waldvogdl, G. Varghese, J. Turner, and B. Plattner, “Scalable High-Speed
Prefix Matching,” ACM Trans. on Computer Systems, vol. 19, pp. 440-482, Nov.
2001.

M. A. Ruiz-Sanchez, et al., “Survey and Taxonomy of IP Address Lookup

Algorithms,” /|EEE Network Magazine, pp. 8-23, Mar. 2001.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Waldvogel, “Multi-Dimensiona Prefix Matching Using Line Search,” in

Proc. of IEEE LCN, Nov. 2000.

P. Warkhede, S. Suri, and G. Varghese, “Fast Packet Classification

for Two-Dimensional Conflict-Free Filters,” in Proc. of IEEE INFOCOM,
2001.

Merit Networks Inc., Internet Performance Measurement and Analysis

(IPMA) statistics and daily reports, in IPMA project,

http://www. merit. edu/ipma/routing table/

http://www. mcvax. org/~jhma/routing/

P.A. Hall and G.R. Dowling, “Approximate string matching”, ACH
Computing Surveys, vol. 12, pp. 381-402, 1980.

G. Navarro, “A guided tour to approximate string matching”, ACH
Computing Surveys, vol. 33, pp.31-88, 2001.

P. Sellers, “The theory and computation of evolutionary distances:
pattern recognition”, Journal of Algorithms, vol. 1, pp. 359-373,
1980.

V. A. Alfred and J. C. Margaret, “Efficient string matching: an aid
to bibliographic search”, Communications of the ACM, vol. 18, June
1975.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W.
Plandowski, and W. Rytter, “Speeding up two string matching
algorithms”, Algorithmica, vol. 12, pp. 247-267, 1994.

M. Raffinot, “On the multi backward dawg matching algorithm
(MultiBDM)”, in Proceedings of the 4rd South American Workshop on
String Processing, pp. 149-165, Valparaiso, Chile, Nov., 1997.

K. Thompson, “Regular expression search algorithm”, CACM, vol. 11,

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

pp. 419-422, 1968.

D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching
in strings”, SIAM Journal of Computing, vol. 6, pp. 323--350, June
1977.

R. S. Boyer and J. S. Moore, “A fast string searching algorithm”,
Communications of the ACM, vol. 20, Oct. 1977.

JosuéKuri and Gonzalo Navarro, "Fast Multipattern Search Algorithms
for Intrusion Detection”, SPIKE 2000, pp. 169-180, 2000.

R. A. Baeza-Yatesand G. H. Gonnet, “A new approach to text searching”,
in Proceedings of the 12th annual international ACM SIGIR confe rence
on KResearch and development in information retrieval, vol. 23, May
1989.

S. Wu and U Manber, “Fast text searching: allowing errors’,
Communications of the ACM, vol. 35, Oct. 1992.

G. Navarro and M. Raffinot. “A Bit-parallel approach to Suffix
Automata: Fast Extended String Matching”, in Proc. CPM’ 98, LNCS 1448,
pp. 14-33, 1998.

G. Navarro and M. Raffinot. “Compact DFA representation for fast
regular expression search”, in Proceedings of the 5th Workshop on
Algorithm Engineering, LNCS 2141, pp. 1-12, 2001.

H.-M. Bluthgen and T.G. Noll, “A programmable processor for
approximate string matching with high throughput rate”, in Proc. of
IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, pp. 309-316, 2000.

N. Ranganathan, K. Remedios, and R. Sastry, “CASM: a VLSI chip for

approximate string matching”, 1in [EEE Transactions on Pattern

[31]

[32]

[33]

[34]

[35]

[36]

Analysis and Machine Intelligence, vol. 17, pp. 824-830, Aug 1995.
Raghu Sastry and N. Ranganathan, “A Systolic Array for Approximate
String Matching”, in Proc. of ICCD 1993, pp. 402-405, 1993.

N. Ranganathan and R. Motamarri, “A VLSI architecture for computing
the optimal correspondence of string subsequences”, in Proc. of CAMP
1997, Como, ITALY,Oct. 1997.

K.M. Georgeand H. P. Jin, “Parallel string matching algorithms based
on dataflow”, System Sciences, in Proc. of the 32nd Annual Hawaii
International Conference, 1999.

P. Moisset, P. C. Diniz, and J. Park, “Matching and searching analysis
for parallel hardware implementation on FPGAS’, FPGA 2001, pp.
125-133, 2001.

R. Franklin, D. Carver, and B. L. Hutchings, “Assisting Network
Intrusion Detection with Reconfigurable Hardware”, FCCH 02, 2002.
Reetinder Sidhu and Viktor K. Prasanna, “Fast Regular Expression
Matching using FPGAS”, in [EEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2001), April 2001.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61

