
行政院國家科學委員會專題研究計畫 成果報告

Web Switch 系統的設計與製作(2/2)

計畫類別：個別型計畫
計畫編號： NSC91-2219-E-009-032-
執行期間： 91 年 08 月 01 日至 92 年 07 月 31 日
執行單位：國立交通大學電信工程學系

計畫主持人：李程輝

計畫參與人員：曾德功、郭英哲、謝坤宏、羅天佑、吳銘智

報告類型：完整報告

處理方式：本計畫可公開查詢

中 華 民 國 92 年 10 月 1 日

行政院國家科學委員會補助專題研究計畫成果

報告
※※※※※※※※※※※※※※※※※※※※※※※※

※※※
※

※ Web Switch 系統的設計與製作（2/2）
※
※
※

※※※※※※※※※※※※※※※※※※※※※※※※
※※

計畫類別：þ個別型計畫 □整合型計畫

計畫編號：NSC 90－2213－E－009－089－

執行期間：91 年 08 月 01 日至 92 年 07 月 31 日

計畫主持人：李 程 輝 國立交通大學電信工程學系 教

授

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學電信工程研究所

中 華 民 國 92 年 7 月 30 日

目錄

ABSTRACT… …
… … 4

中文摘

要… …

… … … … ..11

PART I: FAST IP ROUTING TABLE

LOOKUP… … … … … … … … .… 8

I.1 ABSTRACT .. 9

I.2 INTRODUCTION.. 9

I.3 BINARY SEARCH ON PREFIX

LENGTHS… … … … … … …11

I.4 MULTI-WAY SEARCH ON PREFIX LENGTHS......................... 14

I.5 EXPERIMENTAL RESULTS ... 20

I.6 CONCLUSION.. 22

PART II: STRING MATCHING ALGORITHMS AND ITS

HARDWARE IMPLEMENTATIONS23

II.1 ABSTRACT .. 24

6

7

II.2 INTRODUCTION .. 24

II.3 STRING MATCHING ALGORITHMS 25

A.1 DYNAMIC PROGRAMMING ALGORITHM ..25

A.2 AUTOMATON ALGORITHMS..26

A.2.1 AHO-CROASICK ALGORITHM ..27

A.2.2 REVERSE FACTOR ALGORITHM ...28

A.2.3 MULTIBDM ALGORITHM ..29

A.3 REGULAR EXPRESSION ALGORITHM ...30

A.4 FILTER ALGORITHMS ...32

A.4.1 KMP ALGORITHM ..32

A.4.2 BOYER-MOORE ALGORITHM ...33

A.4.3 COUNTING FILTER ..35

A.5 BIT PARALLEL ALGORITHMS ...36

A.5.1 SHIFT-OR ALGORITHM...37

A.5.2 ADVANCED BIT PARALLEL ALGORITHMS ..38

A.5.3 BIT PARALLEL FOR SUFFIX AUTOMATON ALGORITHM.............................38

A.5.4 BIT PARALLEL FOR REGULAR EXPRESSION...39

II.4 HARDWARE IMPLEMENTATION FOR STRING

MATCHING .. 41

B.1 SYSTOLIC ARRAY HARDWARE IMPLEMENTATION...........................41

B.2 PARALLEL AND PIPELINE HARDWARE IMPLEMENTATION42

B.3 RECONFIGURABLE HARDWARE IMPLEMENTATION43

II.5 DISCUSSION .. 44

C.1 STRING MATCHING

REQUIREMENTS… … … … … … … … … … … ...44

C.2 RECOMMEND HARDWARE IMPLEMENTATION OF STRING

MATCHING..
.......45

II.6 CONCLUSION .. 48

REFERENCE ..49

LIST OF TABLE

Table
page

I.1. Comparison of average number of probes required in the binary search and our

proposed multi-way search algorithms on prefix lengths for four backbone

r o u t i n g t a b l e s . . … … 2 0

I I . 1 . K M P p r e f i x
table… … … … … … … … … … … … ...… … … … … … ..… … … … ..… … … 33

I I . 2 . K M P
example..… … … … … … … … … … … … … … … … … .… … … … … … … … ..… … 3

3

I I . 3 . B o y e r - M o o r e b a d c h a r a c t e r
t a b l e … … … … … … … … … … … … … … … … … . . … … … 3 3

I I . 4 . B o y e r - M o o r e g o o d s u f f i x
t a b l e … . . … 3 4

I I . 5 . B o y e r - M o o r e s t r i n g m a t c h i n g
e x a m p l e … … … … … … … … … … … … … … … … . … … . 3 4

I I . 6 . C o u n t i n g F i l t e r
example… .35

I I . 7 . S h i f t - o r
example… ..37

I I . 8 . T h e e x a m p l e o f b i t p a r a l l e l f o r s u f f i x
a u t o m a t o n … … … … … … … … … … . . … … … … 3 8

I I . 9 . I D S s t r i n g m a t c h i n g
r e q u i r e m e n t s … … … … … … … … … … … … … … … … … … … . . … 4 5

I I .10. Analysis of hardware Implementations of IDS string matching
a l g o r i t h m s … . . … … . 4 7

LIST OF FIGURE

Figure
page

I . 1 . B i n a r y s e a r c h o n p r e f i x l e n g t h s f o r a n e x a m p l e r o u t i n g
p r e f i x e s … … … … … … … . … . . . 1 3

I.2. Asymmetric search trees generated respectively by two heuristic approaches for
t h e e x a m p l e r o u t e
prefixes… … … … … … … … … … … ..… … … … … … … … … … … … … ..14

I .3. (a) Binary search and (b) 3-way search on prefix lengths in IPv4
p r o t o c o l … … . . … . . . 1 5

I.4. (a) Construction of L-marker in node i for every route prefix in a node belonging

to set j
lG . (b) Construction of R-marker in node i for any route prefix in a node

b e l o n g i n g t o s e t
j

rG …… … … .
1 7

I . 5 . T h e p s e u d o p r o g r a m o f t h e 3 - w a y s e a r c h
a l g o r i t h m … … … … … … … … . . . … . . . … … … . 1 8

I .6 . (a) 4-wa y and (b) 5 -wa y sea rch on p re f ix l engths in IPv4
p r o t o c o l … … … … … … . . … 1 9

I I . 1 . A D y n a m i c P r o g r a m m i n g
e x a m p l e … … … … … … … … … … … … … … … … … … … . . 2 6

I I . 2 . S i m p l e a u t o m a t o n f o r p a t t e r n
a b a b c … … … … … … … . … . … … … … . … … … … … … . 2 7

I I . 3 . A n A h o - C o r a s i c k
e x a m p l e … … … … … … … … … … … … … … … … . . … … … . … . . . … . 2 8

I I . 4 . A S u f f i x a u t o m a t o n
e x a m p l e … … … … … … … … . … . … … … … … … … … … … … … . . . 2 9

I I . 5 . A M u l t i B D M
example… … … … … … … … … … … … … … . .… … … … … … … … … .. .30

I I . 6 . A G l u s h k o v ’ s c o n s t r u c t i o n
e x a m p l e … … … … … … … … … … … … … … … . . … … … … 3 2

I I . 7 . A S h i f t - o r o c c u r r e n c e t a b l e
e x a m p l e … … … … … … … … … … … … . . … … . . … … … . . 3 7

I I . 8 . P r o c e s s i n g e l e m e n t o f D y n a m i c P r o g r a m m i n g s y s t o l i c
a r r a y … … … … … … … … … . 4 2

I I . 9 . P i p e l i n e a n d p a r a l l e l p r o c e s s i n g
e x a m p l e … … … … … … … … … … … … … … . … … . . . 4 2

I I . 1 0 . R e c o n f i g u r a b l e h a r d w a r e a c c e l e r a t i o n
e x a m p l e … … … … … … … … … … … … … … . 4 3

I I . 1 1 . F o u r m a i n a r c h i t e c t u r e o f I D S s t r i n g m a t c h i n g
a l g o r i t h m s … … … … … … … . . … … … 4 6

Abstract

The purpose of this project is to investigate and implement some key functions

of a web switch. After a thorough survey, we determined to study and implement

the “persistence” and the Quality of Service (QoS) features. The reason is that many

features such as delayed binding, load sharing, and TCP splicing had been studied

extensively and already implemented in existing products. The persistence feature

means that multiple connections of a session are connected to the same server so that

a dialogue between a client and server can be continued. This is considered an

important feature for e-commerce because a user may issue multiple transactions

during his/her visit of a commercial web site. The states of the visiting client are

stored in the server it was connected to and thus the session can be continued

smoothly if succeeding connections of the client are connected to the same server.

The persistence feature can also improve system performance because authentication

and encryption are necessary in e-commerce and new keys have to be generated if the

client is connected to a different server. The QoS feature means that some sessions

are guaranteed a delay bound to receive service. This is also an important feature for

e-commerce because customers can be satisfied with different QoS requests.

To accomplish the persistence and QoS features, mechanisms that establish

connections based on IP address and/or cookie are necessary. In other words, fast IP

address lookup and string matching are important techniques. In the following, we

describe our research results on IP address lookup and string matching separately.

Keywords: Broadband Internet, Quality of service, IP address lookup, string matching,

e-commerce, cookie.

中文摘要

本年度計劃的目標在於探討並完成 web 交換機系統所需的關鍵技術。經過

一番透徹的研讀相關研究報告與文獻，我們決定深入研究並完成網路連線持續性

與服務品質保證之特性。由於其他重要的特性，諸如延遲時間限定、負載平衡、

TCP 封包接合等，均已經被大量研究且已經實現在一些問世的產品上，所以本計

劃著重在網路連線持續性與服務品質保證的關鍵技術研究與實現。所謂持續性功

能，乃在於同一個 session 支援多條連線且連接至相同的伺服器，使得客戶端與

伺服器端的對話(dialogue)可以連續。這項特性對電子商務是一項非常重要的功

能，主因在於一個使用者連接到一個電子商務網站可能同時發起多個交易行為。

而此到訪客戶的狀態會儲存在伺服器內，若此客戶後續的連線也是連接到此伺服

器上，則 session 將可以很順暢的連通。此持續性特質亦可改善系統的效能，主

因在於認證與加解密所需要的金鑰可以分享同一個 session 的金鑰。在電子商務

上，認證與加解密是必須的，而當客戶端連接到不同的伺服器時，就需要先產生

金鑰，而產生金鑰的程序是相當耗時的，會降低系統效能。服務品質是本計劃將

著眼的另一項特性，主要在於保證 session 所收到服務的延遲上限。由於不同的

使用者滿足於不同的服務品質需求，所以服務品質亦是電子商務上另一項重要的

特質。

為了完成持續性與服務品質特性，我們必須要透徹研究基於 IP 位址或 cookie

所建立連線的機制。換句話說，就是快速的 IP 位址查詢與 string matching 機制。

於此計劃中，我們將個別描述 IP 位址查詢與 string matching 機制的研究結果。

關鍵詞：寬頻網際網路、服務品質、IP 位址查詢、電子商務

Par t I:

FAST IP ROUTING TABLE LOOKUP

I.1. ABSTRACT

IP routing table lookup has been considered as a major bottleneck for high-speed

web switch routers. In the past few years, several data structures and related

algorithms have been developed to accomplish high-speed routing table lookup. In

particular, an efficient algorithm, called binary search on prefix lengths, was designed

by grouping prefixes of identical lengths into individual tables and applying hashing

technique in these tables to find matching prefixes. The time complexity of binary

search on prefix lengths is  )1log(+W assuming W-bit address. In Part I of this

project, we propose a multi-way search algorithm on prefix lengths to improve the

average lookup performance of the binary search scheme without sacrificing its

worst-case search performance. The proposed scheme is so simple that it basically

does not increase the complexity in constructing the search tree and in memory

requirement. Through experiments on real backbone routing tables, we found that

the improvement can be more than 37% for most tables and 21% for one table.

I.2. INTRODUCTION

Because of the explosive growth of Internet traffic, the performance of IP routing

table lookup is becoming critical for high-speed routers to provide satisfactory

services. As such, many researches developed in the past few years new algorithms

to accomplish high-speed routing table lookup [1]-[10]. Some of the algorithms

compress the routing table with sophisticated data structures so that a processor can

perform routing table lookup in its cache [1]-[5] and some others use simple data

structures with special hardware to assist the search process [6]-[7]. In general,

sophisticated data structure renders difficulty in table update and simple data structure

may require a large amount of memory.

Since there are two parameters N (the number of route prefixes) and W (the

number of address bits) in the IP routing table lookup problem, the time complexity of

a search algorithm may depend on either N or W. For example, linear search is a

simple algorithm of time complexity N. Since insertion and deletion of a route

prefix is very simple in linear search, it is widely used when N is small. To reduce

the search time, one can encode a route prefix as a range [4]. Assuming that W is 6,

then a route prefix like 11* is actually a range addresses from 110000 to 111111.

When route prefixes are encoded as ranges, one can apply binary search for table

lookup. As was shown in [4], the search time complexity is log(2N) for N route

prefixes. Although the search time is largely reduced with binary search, it is more

difficult to insert or delete a route prefix.

Search algorithms with time complexity depending on W are likely to be better

choices when the number of route prefixes N is large. Radix trie [5] is a well-known

example of routing table lookup algorithm whose time complexity depends on W.

To reduce the search time, an interesting algorithm, called binary search on prefix

lengths, proposed in [8] can search for the longest matching prefix for an incoming

packet with time complexity  )1log(+W . In this search algorithm, the route

prefixes are organized into tables according to their lengths and uses a hashing

technique to look for the matching prefix in each of these tables. In fact, the binary

search on prefix lengths is deemed an efficient solution for routing table lookup.

However, each hash probe takes at least one memory access, which is significant at

gigabit speeds. Thus, several variants have been developed to improve the average

lookup performance by employing a weighting function to optimize the binary search

tree pattern [9]. Unfortunately, they are not applicable to routing table lookup

because either the worst-case lookup performance is sacrificed or the tree pattern

could be altered frequently as route prefixes change. There are several other

interesting routing table lookup algorithms. One can find a good survey of these

algorithms in [10].

In Part I of this report, we present a multi-way search on prefix lengths to

improve the average lookup performance of standard binary search on prefix lengths

without scarifying the worst-case search time and storage requirement. This

algorithm is simple and basically does not increase the complexity in constructing the

binary tree. We show through experiments with real routing tables that the

improvement could be more than 37% for most tables and 21% for one table.

In Part I, the rest of this report is organized as follows. In Section I.2, we

briefly review the concept of binary search on prefix lengths proposed in [8]. An

example is provided to explain the operation of such an algorithm. Our proposed

algorithm, named multi-way search on prefix lengths, is presented in Section I.3. In

Section I.4, we compare the lookup performance of these two schemes with some

collected routing tables. Finally, we draw conclusion in Section I.5.

I.3. BINARY SEARCH ON PREFIX

LENGTHS

The IP routing table lookup problem can be described as follows. Given an

incoming packet’s destination IP address, find the longest matching prefix among a

set of route prefixes. Since every route prefix length is variable, it is difficult to

determine how many bits of the destination address should be taken into account

when compared with the route prefixes. To overcome this problem, an interesting

approach has been proposed that allows a sequential search on length dimension.

Such an approach organizes the route prefixes in different tables according to their

lengths and uses a hashing technique to look for the matching prefix in each of these

tables. The search strategy is to probe these tables in sequence starting from the one

holding the longest prefixes and terminate whenever a match is found. Assuming

that the address length is W and a perfect hash function is applied, this approach

requires up to W probes.

In order to reduce the search time, a binary search on prefix lengths was

proposed in [8]. In this algorithm, markers and pre-computation are two important

mechanisms. Markers are used to guide the search process while pre-computation

avoids back tracking. More concretely, individual tables form a binary tree based on

route prefix lengths to enable binary search. To guide the binary search process, a

route prefix in table i places a marker in an ancestor node if and only if the node

representing table i lies in the left sub-tree of the ancestor node. (Table i denotes a

table that consists of route prefixes with length i.) To avoid back tracking, one has to

pre-compute the longest matching prefix for each marker. The longest matching

prefix of a marker is a matching route prefix that is shorter than the marker but longer

than any other matching route prefixes. Note that it is possible that a route prefix R

and a marker M both match the query address. Based on the above definition, the

longest matching prefix is R. The search process starts to probe the root node. If a

match is found, we move to its left child. Otherwise, probe its right child. The

search process ends after a leaf node is probed. Clearly, the number of hash probes

is  )1log(+W . Since a route prefix can generate up to logW markers, the

worst-case memory requirement is NlogW with a set of N route prefixes.

In Fig. I.1, we use an example route prefixes to illustrate this scheme. The

content of individual hash tables in binary tree form is also shown in Fig. I.1. In this

example, we assume that there are 12 route prefixes and W is equal to 6. In this

figure, an entry (X, Y) represents a route prefix or a marker X and its corresponding

longest matching prefix Y. In case the longest matching prefix is null, Y is replaced

with “-”. In Fig. I.1, one can find that route prefix c (= 01110*) places one marker

0111* in hash table 4 and the pre-computation for this marker is route prefix i.

Further, another marker 0001* in hash table 4 is generated by route prefix l (= 000111)

but the corresponding pre-computation result is null because there is no route prefix

that is a prefix of 0001*. Assume that we are looking for the longest matching

prefix of the address 110011. The search process starts with table 4, moves to tables

6 and 5 in sequence, and then terminates. The longest matching prefix found is f.

In fact, binary search on prefix lengths is deemed an efficient solution for routing

table lookup. However, each hash probe takes at least one memory access, which is

significant at gigabit speeds. Thus, several variants of binary search on prefix

lengths have been developed to reduce the average number of hash probes. For

example, a heuristic approach presented in [9] changes the tree-shaped search pattern

according to the address space covered by all route prefixes in a hash table. That is,

a table with more addresses covered by route prefixes contained in the table is placed

Route prefixes

a 1*

b 0100*

c 01110*

d 100*

e 1100*

f 10*

g 101110

h 01*

i 111*

j 001*

k 000111

Fig. I.1. Binary search on prefix lengths for an example routing prefixes.

(0100*,b)
(0111*,h)
(1100*,e)
(1011*,f)
(0001*,-)

(1*,a)

(11*,a)
(10*,f)
(01*,h)
(00*,-)

(100*,d)
(111*,i)
(001*,j)

(01110*,c)
(101110,g)
(000111,k)

Length = 4
Length = 3

Length = 1

Length = 2

Length = 5
Length = 6

closer to the tree root. The binary tree of this approach for the example route

prefixes is depicted in Fig. I.2(a). In this figure, node i represents a table that

consists of all prefixes with length i. Clearly, this introduces asymmetry into the

binary tree. While reducing the average lookup performance, some query packets

could degenerate towards linear search, which is undesirable. Also, incremental

update (insertion or deletion of a route prefix) may require reconstructing the search

tree in order to optimize the average performance. Another heuristic approach

presented in [9] is to build a useful asymmetric tree based on a weighting function

which is defined to be the number of entries in a table. As a consequence, a table

with more route prefixes is placed closer to the tree root. However, the worst case

bound has to be satisfied. Consider the example route prefixes illustrated in Fig. I.1.

Assume that W is equal to 6 and thus the worst case bound is 3. The weights of

tables 1, 2, 3, 4, 5, and 6 are 1, 2, 3, 2, 1, and 2, respectively. Therefore, table 3 is

chosen to be the tree root. It is not hard to see that the worst case bound is violated

if we choose either table 4 or table 6 to be the left child of table 3. Therefore, table 5

is the only choice to be the left child of table 3. The result is shown in Fig. I.2(b).

Clearly, such an approach also needs to reconstruct the tree after some route prefixes

are inserted or removed. In the next section, we present a simple algorithm, called

multi-way search on prefix lengths, to improve the average performance without

sacrificing the worst case performance and changing the tree-shaped pattern as route

prefixes are altered.

1

2

3

4 5

6

1

2

3

5

4

6

(a) Maximize addresses covered. (b) Maximize entries while
keeping the

 worst case bound.

Fig. I.2. Asymmetric search trees generated respectively by two heuristic
approaches for the example route prefixes.

I.4. MULTI-WAY SEARCH ON PREFIX

LENGTHS

Recall that, for the binary search on prefix lengths, a route prefix in table i will

place a marker in an ancestor node if and only if the node representing table i lies in

the left sub-tree of the ancestor node. As an example, consider a 21-bit long route

prefix F in the IPv4 protocol. Suppose that a complete binary tree is constructed

based on prefix lengths as shown in Fig. I.3(a). It is clear that route prefix F in node

21 places markers in node 20 and 16. Assume that no other route prefixes create the

same markers as F. For an address A whose longest matching prefix is F, the search

process in binary search on prefix lengths will traverse nodes 16, 24, 20, 22, and 21 in

sequence. That is, five hash probes are needed. However, we found that the search

time can be reduced if there are links in between nodes 16 and 20 and between nodes

20 and 21 so that the search process can directly move through these three nodes to

find the longest matching prefix. To achieve this, we maintain a multi-way search

tree structure.

For ease of description, we consider the 3-way search tree structure shown in Fig.

I.3(b) in the following. Similar to binary search on prefix lengths, we first construct

binary tree and then recursively create markers for route prefixes. Two types of

markers, i.e. L-marker and R-marker, are employed in the 3-way tree structure. Thus,

each marker consists of a prefix value and a 1-bit state to indicate which type this

marker is. To build the third branch of an internal node and create markers for each

route prefix, we follow the conditions described below. Consider a node i and its left

sub-tree with root node j. Let j
lG denote the set consisting of node j and all the

nodes in its left sub-tree. Similarly, let j
rG represent the set of nodes in the right

16

1

9

11

3

5

7

13

15

17

25

27

19

21

23

29

31

10

2

6

14

26

18

22

30

12

4

28

20

8

24

16

1

9

11

3

5

7

13

15

17

25

27

19

21

23

29

31

10

2

6

14

26

18

22

30

12

4

28

20

8

24

(a) (b)

Fig. I.3. (a) Binary search and (b) 3-way search on prefix lengths in IPv4 protocol.

sub-tree of node j. For every route prefix in a node that belongs to j
lG , we place an

L-marker for this route prefix in node i, as depicted in Fig. I.4(a). For any route

prefix in a node belonging to j
rG , we place an R-marker for this route prefix in node i

if there does not exist an L-marker having identical prefix value in that node. In

addition, we build a link from node i to the root node of the right sub-tree of node j,

i.e. the third branch of node i, as shown in Fig. I.4(b). For example, refer to Fig.

I.3(b), a route prefix in node 26 will create an L-marker in node 16 and an R-marker

in node 24 if no other L-markers in that node have the same prefix value. A link is

constructed from node 24 to node 26 so that, when an R-marker is found in node 24,

the search process can directly move to probe node 26. Notice that L-marker is

identical to that generated by binary search on prefix lengths and R-maker is used to

speedup the search time.

The search process starts to probe the root node of the entire 3-way search tree.

If a “no match” is returned, we move to its rightmost child. If an R-marker is

matched, we move to its middle child. Otherwise, probe its leftmost child. The

process terminates whenever a leaf node is probed. The pseudo program of the

3-way search algorithm is described in Fig. I.5.

To simplify incremental update, we suggest constructing a complete tree that

consists of all possible prefix lengths (like the one shown in Fig. I.3(b)). To insert a

new route prefix, one can simply place the route prefix in the appropriate table,

generate necessary markers and perform pre-computations for these markers. If the

inserted route prefix generates an L-marker that is identical to an R-marker generated

by other prefixes, then the original R-marker becomes void. Notice that some

existing markers may have to change their best matching prefixes when a new route

prefix is inserted. In other words, we have to verify whether or not the inserted route

prefix is the best matching prefix of a marker if the original best matching prefix of

the maker is a prefix of the inserted one. One can utilize the original tree to

accomplish this. For example, suppose a route prefix F of length L is to be inserted.

A necessary condition for a marker to change its best matching prefix is that F is a

prefix of the marker. Assume that the length of the marker is L+k. The marker can

be found as long as all 2k possible combinations are searched. Another method for

updating the best matching prefixes of markers is to first find all route prefixes that

have F as their prefix and then change best matching prefixes for corresponding

markers.

To delete a route prefix, one should remove the route prefix, its markers, and

update the best matching prefixes of those markers that have the deleted route prefix

…

j
lG

j
rG

Construction
of R-markers

j

…

…

j
lG

j
rG

Construction
of L-markers

i

j

i

Fig. I.4. (a) Construction of L-marker in node i for every route prefix in a node

belonging to set j
lG . (b) Construction of R-marker in node i for any route prefix in a node

belonging to set j
rG .

…

…

…

…

…

as their best matching prefixes. Assume that a route prefix F of length L is to be

deleted. Also, let H be the longest route prefix that is a prefix of F. Any marker

that has F as the best matching prefix must change it to H. All the markers that

potentially have to change their best matching prefixes can be found with the same

process as F is to be inserted. To determine H, one can search all tables of length

smaller than L.

Obviously, the concept of 3-way search tree can be generalized to an arbitrary

k-way tree structure. Fig. I.6 shows the 4-way and 5-way search trees for IPv4 route

prefixes. A directed link from node 16 to node 18 means that a route prefix or a

marker of length 18 places a marker in node 16 and there is no other route prefixes or

markers of length longer than 19 that places the same marker in node 16. Of course,

for the 4-way (and 5-way) search tree, we have to use two bits to distinguish three

Given a 3-way search tree and suppose that each node in the tree is a hash table consisting

of route prefixes of identical length.

Input: Query address A

Output: Longest matching prefix F for query address A

Variable: Tree’s node X

Initialization: Set node X as the root node of the 3-way search tree and F as the default

route prefix or null.

While (node X is not null) {

Probe node X to find the matching route prefix for query address A;

If (“no match” in node X) {

node X ← rightmost child of node X;

}
else {

If (an R-marker is matched in node X) {

Update the longest matching prefix F as the pre-computation result of the

R-marker;

node X ← middle child of node X;

}
else {

Update the longest matching prefix F as the pre-computation result of the

L-marker;

node X ← leftmost child of node X;

}
}

}

Fig. I.5. The pseudo program of the 3-way search algorithm.

16

1

9

11

3

5

7

13

15

17

25

27

19

21

23

29

31

10

2

6

14

26

18

22

30

12

4

28

20

8

24

16

1

9

11

3

5

7

13

15

17

25

27

19

21

23

29

31

10

2

6

14

26

18

22

30

12

4

28

20

8

24

 (A) (B)

Fig. I.6. (a) 4-way and (b) 5-way search on prefix lengths in IPv4 protocol.

(and four, respectively) different markers and guide the search process. It is not hard

to see that the maximal k is five for 32-bit IPv4 addresses and seven for 128-bit IPv6

addresses. Basically, our proposed algorithm is so simple that it does not increase

the complexity in constructing the search tree and in memory requirement. In the

next section, we compare the average lookup performance of our proposed scheme

with that in binary search on prefix lengths through experiments on real backbone

routing tables.

I.5. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of our proposed

algorithms and compare with the binary search scheme on prefix lengths in terms of

the average number of hash probes. Four backbone routing tables in PAIX, AADS,

MAE, and MCVAX are collected from the IPMA project for the experiments

[13]-[14], as shown in Table I.1. To measure the average number of hash probes

required, we consider querying all possible addresses that are created respectively

from the non-overlapping intervals delimited by given route prefixes. Note that each

route prefix has two end points and the collection of all the end points will divide the

entire address space into a set of non-overlapping intervals. The lookup results for

these algorithms are summarized in Table I.1. The results show that the average

number of probes required in the binary search on prefix lengths is close to the

theoretical bound in the worst case, i.e. logW. However, our proposed 3-way search

algorithm significantly reduces the average lookup time by a factor of more than 21%

for MCVAX routing table and 37% for other tables. As can be seen from the

numbers, the further improvement of either 4-way or 5-way search is not as

significant as the improvement obtained from the 3-way search. Therefore, our

suggestion is to use the 3-way search algorithm to reduce the update complexity when

route prefixes change.

It should be noted that the improvement in the MCVAX routing table is less than

those in other tables. This is because that there is nearly half of 32-bit route prefixes

and thus nearly half of querying addresses needs the worst-case number of probes to

find the longest matching prefix.

I.6. CONCLUSION

We have presented in this report a simple multi-way search algorithm on prefix

lengths to improve the average performance of the binary search scheme while

keeping the same worst-case performance in IP routing table lookup. Through

experiments on real backbone routing tables, we found that the improvement can be

more than 21% for MCVAX routing table and 37% for other tables. Since the gain

increases as the depth of the search tree increases (which is induced by longer address

length), we believe that our proposed algorithm achieves more improvement for

128-bit IPv6 routing table lookup. Further, one can apply our proposed algorithm to

improve the average search time for tuple space-based multi-field packet

Table I.1. Comparison of average number of probes required in the binary search and our

proposed multi-way search algorithms on prefix lengths for four backbone routing tables.

Average number of probesRouting
table

Number of
prefixes Binary search 3-way search 4-way search 5-way search

PAIX 21936 4.8611 3.0569 2.8377 2.7911

MAE 42290 4.7053 2.9759 2.8466 2.8016

AADS 40723 4.7284 2.9846 2.8253 2.7943

MCVAX 136531 5.3172 4.2037 4.1334 4.0277

classification [11]-[12].

Par t II:

STRING MATCHING ALGORITHMS

AND ITS HARDWARE

IMPLEMENTATION

II.1. ABSTRACT

String matching is a performance bottleneck in the pattern-based load balancing

or QoS guarantee in a web switch. This problem can be solved by a suitable

hardware of string matching. Thus, we survey the related algorithms and hardware

implementation in Part II of this project, and try to propose the suitable algorithm and

architecture for the string matching. According to our survey and analysis, we

conclude that the multiple pattern and wildcard are the mandatory requirements for

string matching, and bit parallel are the most suitable algorithm for hardware

implementation.

II.2. INTRODUCTION

Pattern-based load balancing or QoS guarantee requires the deep content

inspection of packet and the content is variable in the length and start position, thus

the string matching is the suitable technique for this content inspection. From the

previous related papers [15-16] and based on our observation, we can classify the

string matching into the following taxonomy:

Dynamic programming algorithms: use the dynamic programming algorithm to

compute the pattern and text distance of similarity. This kind of algorithms is no

need the preprocessing phrase for the patterns.

Filter algorithms: use the heuristic skipping technique to save the comparison of

characters. This kind of algorithms needs the preprocessing phrase to build the

skipping tables.

Automaton algorithms: Automaton algorithms transfer the patterns into the

automaton in preprocessing phrase, and in the search phrase it traverse the automaton

to find a match. The automaton traversing is implemented as a lookup processing

from the transition table with the corresponding state and character.

Bit parallel algorithms: This kind of algorithms uses bit vector to simulate the

automaton, it converts the characters of patterns to the bit occurrence table in the

preprocessing phrase. In the searching phrase, it lookups current characters of text

in occurrence table and perform the bitwise operation with a state mask. If there is a

matching the corresponding bit of state mask will be zero or one.

The string matching is the major performance bottleneck, thus the hardware

solution is useful to boost the speed. In this project, we also survey existing the

hardware implementations of string matching algorithms. According to our study,

there are three architecture have been proposed. They are (1) systolic architecture,

(2) pipeline and parallel architecture, (3) reconfigurable architecture. However, the

existing hardware implementation is not suitable for string matching algorithms at all.

In addition, we have the analysis of string matching requirements, the related

algorithms and its hardware implementation so that we can conclude that the bit

parallel string-matching algorithm is a suitable algorithm and hardware

implementation for string matching.

Part II of this project is organized as follows. Section II.2 studies some

important string matching algorithms as our taxonomy. Section II.3 surveys existing

hardware implementation of string matching algorithm. Section II.4 discusses the

requirements of string matching, and proposed the suitable hardware architecture.

Finally, Section II.5 is our conclusion.

II.3. STRING MATCHING ALGORITHM

There are many string matching algorithms have been widely discussed in a

recent several decade, but only some on-line string matching algorithms that

preprocessing of pattern are suitable for load balancing and QoS guarantee, the

preprocessing of text is suitable for information retrieval. In this section we study

related string matching algorithms in detail and classify them as our previous

taxonomy.

A.1 DYNAMIC PROGRAMMING ALGORITHM

Dynamic programming algorithm was proposed in the [17], which uses the

dynamic programming array to compute the result of string matching. At first, it

forms an n*m matrix of text and pattern, n is the length of text and m is length of

pattern. This algorithm intends to find the distance-similarity between pattern and text,

if the distance is less, the similarity is more. The common distance value is the edit

distance; the edit distance is the mismatching number between the pattern and of text.

One edit distance value can be reduced by one operation of insertion, deletion or

substitution. The following is a formula of edit distance computation, D denote edit

distance matrix, and i, j are the index of text x and pattern y. If xi is equal yj in

character, then current D(i,j) is set to the left upper D(i-1,j-1) value, otherwise D(i,j) is

set to the minimum value of the left upper (i-1,j-1), left D(i-1,j) or upper D(i,j-1)

value that plus one.

Di,0=i

D0,j=j

D(i,j) = if (xi=yj) then Di-1,j-1 else 1 + min(Di-1,j,Di,j-1,Di-1,j-1)

Dynamic programming algorithm computes edit distance from left top to right

bottom cells, and fill the cell one by one. The final result is the most right bottom

cell. This algorithm has worst case O(n) and not need the preprocessing of pattern.

Because its matrix is fixed size, and its best case is its worst-case time complexity.

This algorithm is only suitable for the application with short pattern and text.

Fig. II.1 is a dynamic programming example; the text is “search” and pattern is

“seerh”. The most right bottom cell is 2, which means the pattern and the text

having two differences of edit distance. That needs two operation of insertion,

deletion or substitution to let the pattern to be equal the text.

5
4
3
2
1
0 654321

222334h
321223r
432112e
432101e
543210s

hcraes

5
4
3
2
1
0 654321

222334h
321223r
432112e
432101e
543210s

hcraes

Fig. II.1. A Dynamic programming example.

A.2 AUTOMATON ALGORITHMS

Automaton algorithms search the text by traversing the automaton graph. The

automaton is built from the pattern. For the simple automaton algorithm, it builds the

minimal deterministic automaton to recognizing the single pattern; the pattern is

converted into an automaton in this preprocessing phrase. Moreover, for the

character that is not in the string path, automaton will has a state transition to the

initial state, but if there is a repeated prefix, it will has a state transition by skipping

the prefix state. Fig II.2 illustrates an automaton for pattern “ababc”. The

searching phrase is traversing its automata if there is existed a path. When the final

state is reach, then a string matching is report. It has worst case O(n) for the searching

time, and it has the same states as the length of pattern. Thus, this preprocessing

time is O(m) in preprocessing time.

In addition to the basic automaton algorithm, we also survey three advanced

automaton algorithms in this section, that includes Aho-Corasick[18], reverse

factor[19] and multiBDM[20] algorithms.

S0 S1 S2 S3

Start
a a

S4
bb

a

a

S5
c

a

a

Fig. II.2. Simple automaton for pattern “ababc”.

A.2.1. AHO-CROASICK ALGORITHM

Aho-Croasick is a multiple patterns string matching algorithm. In the

preprocessing phrase, it builds three tables from the patterns, that includes goto table:

g(state, ti), failure table: f(state) and output table: output(state). The “goto” table is

easy to build, each character of pattern is an edge of automaton and the patterns share

the same edge if they have same prefix. The output table is built from marked the

state that it should output a string matching. When a mismatch is occurred, the next

state will be the state by looking the corresponding failure table. Failure table is

computed from that the length of current longest suffix that is also a prefix. This

means it can skip the prefix comparison if a prefix is found.

In the searching phrase, each text character is inputted to g(state, ai), if its next

state output(state) is not empty, it means that the pattern is matching. If its next state

fails to be found, g(f(state), ai), and it checks output(state) again. This algorithm has

worst case O(n) for searching multiple patterns. The following is an example, the

patterns are {he, she, his, hers}, if the input text is “ushers”. In the goto table g(4,

e)=5, The output(5) has “she” and “he”. But when g(5, r), there is not next state in

goto table, then a failure is occurred. Sine failure table f(5)=2, it will lookup the goto

table again, but g(2, r)＝8 , and output(8) is not output, thus no string matching is

reported in this case.

0

8

33021000F(i)

97654321i

0

8

33021000F(i)

97654321i

hers9

his7

she,he3

he2

Output(i)i

hers9

his7

she,he3

he2

Output(i)i
0 1 2 8 9

2 7

543

h e r s

s

ehs

i

~(h,s)

Goto Function Output Function

Failure Function

Fig. II.3. An Aho-Corasick example.

A.2.2. Reverse Factor Algor ithm

Reverse factor algorithm is also called suffix automaton algorithm; the suffix

automaton is a DAWG (Directed Acyclic Word Graph) that match a string from right

to left in a text window, and the text windows is slide from left to right along with the

input text. The suffix automaton is built from reversed pattern in the preprocessing

phase. Fig. II.4 demonstrates an suffix automaton for pattern P ={aabbaab}, firstly we

reverse pattern Pr ={baabbaa}, and each character is a edge, then we add an initial

state and empty λ transitions to all other states. This is a NFA and showed on the

top automaton of Fig. II.4. The second step, we build the bottom automaton of Fig.

II.4 using subset construction.

In the searching phase, the suffix automaton is used to save the comparison when

a mismatch occurs in the text window. This algorithm read the text characters of the

text window from right to left, and moves along the automaton. And the path in the

automaton from the initial state to the final state is a knowing the longest prefix, that

used to guarantee safe skip for a mismatch. When there is a longest prefix in a

mismatch path, this algorithm aligns with the longest prefix, not skips all text window.

For example, if the text is the “abbabaabbaab”, the above suffix automaton has a

mismatch path “baaba”, there is a longest prefix aab in current path, thus the text

window is slide to align the aab prefix.

0 1 2 3 4 5 6 7

I

b a a b b a a

λλλλλλλλ

1,4,50,1,2,3,4,5,6,7

2,3,6,7

2,6 3,7 4 5 6 7

a

a b

b a a b b a a

Fig. II.4. A suffix automaton example.

A.2.3. MULTIBDM ALGORITHM

The multiple backward DAWG (MultiBDM) algorithm combines the suffix

automaton and Aho-Corasick automaton, thus it have advantage to use their heuristic

techniques. In the preprocessing phrase, the Aho-Corasick automaton and suffix

automaton will be built as the fundamental algorithms.

In search phrase, the MultiBDM algorithm scans DAWG from right to left to

skip some comparison in a text window, then scans Aho-Corasick automaton to

checks the pattern match. There are two cases in the scanning DAWG. The case 1:

Scan_DAWG is stopped before critical position critpos, if Scan_DAWG found a

longest prefix pre, then it updates critpos and repeat the Scan_DAWG again. The

case 2: Scan_DAWG reaches the critical position critpos, then it does Scan_AC from

critical position critpos, and read until end window pos. If the recognized pre>lim/2,

then Scan_AC continue to read, otherwise restart a Scan_DAWG. The notation lmin

is the minimal length of patterns, pos is end of the window, pre is the longest prefix

that reads by Scan_DAW, u is a prefix of the window that reads by Scan_AC and

critpos is critical position, end of u.

Fig. II.5 is an example for patterns {abbb, ababbba}, the right automaton is the

Aho-Corasick automaton and the left automaton is the suffix automaton. The suffix

automaton is built from the reverse cut patterns {bbba, baba}, and the dash line is the

failure link in the Aho-Corasick automaton. The following three steps show a

searching process over the text “abbabbababbba”.

Step 1: [abba]bbababbba, pos = 4, critpos = 0. Initially, it does Scan_DAWG to

read {a,b}, if we fail to read {b},and pre = {a}, and critpos is not reached. The pre <

lmin/2, thus restart a Scan_DAWG.

Step 2: abb[abba]babbba, pos =7, critpos = 4. Firstly, it does Scan_DAWG to

read {a, b}, if we fail to read {b}, and new pre = {a}, critpos is not reached. The pre <

lmin/2, thus restart a new Scan_DAWG.

Step 3: abbabb[abab]bba with pos=10, critpos = 7. Firstly the Scan_DAWG

reads [b, a, b, a], pre = {a, b, a, b}, and critpos is reached. It belongs to case 2, and

Scan_AC reads {a, b, a, b}, and recognized pre >= lmin /2, thus continue to read {b,

b} and report a match, and then read {a} and report second match again.

0 01 2

3 4

5 6 7 8 9

a b

b b

a b b b a

0

1 2 3 4

765

b b b a

aa

a

a

a

Fig. II.5. A MultiBDM example.

A.3 REGULAR EXPRESSION ALGORITHM

Regular expression (RE) is a generalized string description with basic string,

kleene star (*), concatenation and union (|). Each RE has a corresponding finite

automaton (FA), the FA can be nondeterministic or deterministic, the nondeterministic

finite automaton (NFA) allows more then one next transition in the state transition,

and its conversion from RE to NFA requires m states. The deterministic finite

automaton (DFA) allows only one next transition, DFA may have up to 2m states, and

thus the DFA requires larger space to store its transition state than NFA.

If we use the DFA for string matching, in preprocessing phrase, a DFA is built

from the pattern by using the subset construction, and because this method is famous

in formal language textbook, we omit the detail introduction in here. In the

searching phrase, we read the text and traverse the DFA to find a match, if a final state

is reached, it we output a match. If we use the NFA, it needs to extra technique to

distinguish the multiple transitions for an input. There are two NFA constructions

have been proposed, Thompson’s construction [21] and Glushkov’s construction,

Thompson’s construction produces up to 2m states and it is not λ free λ NFA.

Glushkov’s construction produces exactly m+1 states and it is λ NFA. Thus the

Glushkov’s construction is superior to the Thompson’s construction. And we

demonstrate the Glushkov’s construction only in section in Fig. II.6.

Glushkov’s construction has m+1 states, and marks the states with order number

initially, then it uses the First (RE), Last (RE), Follow (RE, x), and Empty (RE)

functions to build the NFA. The following is an example for RE =

((AT|GA((AG|AAA) �)). We first marks RE with order number as

(A1T2|G3A4((A5G6|A7A8A9)�)), the order number is the state number in the NFA.

Then we mark the initial state by using First (RE), the First (RE) is the set of positions

at which the reading can be started. For example: First (A1T2|G3A4((A5G6|A7A8A9)

�))= {1 ,3 }. After mask the initial state, we can marked the final state by using

Last(RE), the Last(RE) is the set of positions at which a string can be recognized. For

instant: Last (A1T2|G3A4((A5G6|A7A8A9)�))={2 ,4 ,6 ,9 }. Then we compute the

Follow (RE, x) for each state x, the Follow (RE, x) is the all positions in RE

accessible from state x, for instance: Follow ((A1T2|G3A4((A5G6|A7A8A9)�)),6)=

{7,5}. This NFA is much smaller the Thompson NFA, and in the searching phrase,

it only requires to store the related Follow (RE, x) if there are more than one next

transition.

0 1 2 3 4 5 6 7 8 9
A1 T2

G3

A4

A7
A5

A8 A9

A7

A7G6A5
A5

A5

A7

Fig. II.6. A Glushkov’s construction example.

A.4 FILTER ALGORITHM

Filter algorithm directly compares the pattern with text character by characters.

This kind of algorithm has some heuristic technique to save the comparison, the first

one is Knuth-Morris-Pratt(KMP)[22], it is a simple algorithm and utilize the prefix

substring only. The second is Boyer–Moore[22] algorithm, which uses bad

character and good suffix shift for a mismatch. And the third algorithm is counting

filter which uses counting technique to find out the similar text portion with pattern.

A.4.1. KMP ALGORITHM

KMP is a single pattern algorithm and performs the left to right scan, it consists

of two phases. In preprocessing phase it computes the prefix function for the pattern

P. and in the searching phase, the pattern is searched against text with the prefix table.

Table 1 is a prefix table for pattern ATCACATCATCA. Each cell of prefix row

records the current suffix length that is also a prefix.

In the searching phrase, the pattern is compared against the text character by

character. If a mismatch occurs, it have two cases for the following actions. Case

1 : when no prefix is found, it slides the pattern to right with the compared length.

Case 2 : when a prefix is found at current suffix, it slides the pattern to right with

compared length minus the prefix length. Table 2 is an example for the KMP string

matching, when a mismatch occurs at position 3, ATC has no prefix, thus the row 4 is

the case 1. The row 5 and row 6 are the case 2, because they have prefix A and ATC.

Case 2 is shift less than case 1.

TABLE II.1. The KMP prefix table.

Pattern A T C A C A T C A T C A

Prefix 0 0 0 1 0 1 2 3 4 2 3 4

TABLE II.2. A KMP example.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Text A T G A T C A T C A C A T C G T A A A A A A

Pattern A T C A C A T C A T C

Case 1 A T C A C A T C A T C

Case 2 A T C A C A T C A T C

Case 2 A T C A C A T C A T C

A.4.2. BOYER-MOORE ALGORITHM

This algorithm uses three techniques, which includes (1) scans from right to left

in a pattern length window, (2) uses bad character shift rule and (3) computes last

occurrence and good suffix function. In preprocessing phrase, it builds the bad

character and good suffix shift table. The bad character shift table records the last

occurrence position for each alphabet; Table II.3 is an example for pattern

ATCACATCATCA.

TABLE II.3. The Boyer-Moore bad character table.

Alphabet A G C T

Bad char 12 0 11 10

Table II.4 is a good suffix table, it has two cases to compute the shift value, case

1 stores the rightmost position of a rightmost substring that is the right suffix

substring at current position (not include the current character). Case 2 records the

length of prefix is also a suffix at current suffix length from right to left. The good

suffix shift is the pattern length m minus the maximum case 1 or case 2.

TABLE II.4. The Boyer-Moore good suffix table.

Good Suffix 1 2 3 4 5 6 7 8 9 10 11 12

Pattern A T C A C A T C A T C A

Case 1 0 0 0 0 0 0 9 0 0 6 1 11

Case 2 4 4 4 4 4 4 4 4 1 1 1 0

Good suffix 8 8 8 8 8 8 3 8 11 6 11 1

In searching phrase, when a mismatch occurs, it shift text by some shift amount,

the shift amount = max(bad_char_shift, good_suffix_shift). It checks the bad

character table and good suffix table. The left shift amount is the maximum value

from these two tables. If always shift by one, its worst case searching time is O(nm).

But shift by more than one is possible, and it has best case O(n/m). During the

searching, the pattern windows with text by sliding from left to right, but in the

pattern windows, pattern compares with text from right to left.

Table II.5 is an example for Boyer Moore string matching. When a

mismatching occurs at “A” character in row 2, the bad character shift value is 2 and

good suffix shift value is 1, thus it chooses the bad character shift, and shift to right by

2.

TABLE II.5. A Boyer-Moore string matching example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Text G A T C G A T C A C A T C A T C A C G A A A A A

Pattern A T C A C A T C A T C A

Bad

char
A T C A C A T C A T C A

Good

suffix
A T C A C A T C A T C A

A.4.3. COUNTING FILTER

Counting filter increases the matched counter when a character of the text

window appears in patterns. And if the matched counter is equal to pattern’s length

that indicates the text windows might be matched with pattern, thus it verify it by a

exact comparison. In the searching phrase, each alphabet c in pattern requires a

counter A[c] to maintain the difference between pattern and text window, and a

matched counter MA to indicate whether a matching might be occur.

In preprocessing phrase, A[c] is set to the number that c appears in the pattern

and MA is set to zero. In searching phrase, we first process initial text windows, the

MA=MA+1 if A[tj] > 0 and A[tj] -1 after processing MA. Then for moving in a

character, we MA=MA+1 if moving in A[tj] > 0 and A[tj] -1 after processing moving

in, and for moving out a character, we MA=MA-1 if moving out A[tj-m-k] > 0 and

A[tj-m-k] +1 after processing moving out. There might be a possible match if MA =

length of pattern. Table II.6 is a example for search a pattern “aloha“ over the text

window “helloa”. Initially, it set A[a]=2, A[l]=1, A[o]=1, A[h]=1, A[e]=0, MA = 0.

And the result is that, in the row 6 and column 7, the MA=4 means that there might be

a match, thus we can verified this text windows using the exact comparison.

TABLE II.6. A Counting Filter example.

Initial A[a]=2 A[l]=1 A[o]=1 A[h]=1 A[e]=0 MA = 0

Read h A[a]=2 A[l]=1 A[o]=1 A[h]=0 A[e]=0 MA = 1

Read e A[a]=2 A[l]=1 A[o]=1 A[h]=0 A[e]=-1 MA = 1

Read l A[a]=2 A[l]=0 A[o]=1 A[h]=0 A[e]=-1 MA = 2

Read l A[a]=2 A[l]=-1 A[o]=1 A[h]=0 A[e]=-1 MA = 2

Read o A[a]=2 A[l]=-1 A[o]=0 A[h]=0 A[e]=-1 MA = 3

Read a A[a]=1 A[l]=-1 A[o]=0 A[h]=0 A[e]=-1 MA = 4

This filter algorithm can also be applied to multiple patterns with a slight

modification. Multiple A[c] of multiple patterns can be packed into a computer words

and update them in one iteration, and the multiple MA can be packet into a computer

word as well.

A.5 BIT PARALLEL ALGORITHM

Bit Parallel algorithms use the bit state vector to simulate the nondeterministic

finite automaton (NFA) in string matching, thus bit parallel algorithms are powerful

as the automaton algorithms, more over the bit parallel are easier to handle and the

class, allowing error and multiple pattern features of string matching. In bit parallel

algorithm, each bit of the state vector represents a state in NFA. Bit parallel

normally requires to build occurrence table for the patterns in preprocessing phrase,

the occurrence table store the occurring bit vector of pattern for each alphabet. In

the searching phrase, for each reading of character in text, it fetches the bit vector

from occurrence table and does the bitwise operation with current state vector to

produce a new state vector. The new state vector represents the current matched

status. The shift-and is basic bit parallel algorithm, in its searching phrase, its

updated function is][&)10|1((1'
j

m tBDD −<<= . Where D is current state mask,

'D is next state vector, m is length of pattern. B is occurrence table, and jt is

current character of text.

In this section, we survey significant bit-parallel algorithms that include shift-or

[25], advanced bit parallel methods [26] and bit parallel suffix automaton [27], and bit

parallel regular expression [28]. The basic idea of shift-or is similar to shift-and but

with different bitwise operation and different state vector representation. And the

advanced bit parallel methods are showed by Sun-Manber that modified shift-or for

long pattern, approximation, allowing classes, multiple patterns. The algorithm

simulates suffix automaton in bit parallel, and the NFA also can be simulated by a bit

parallel method for the regular expression.

A.5.1. SHIFT-OR ALGORITHM

Shift-or has preprocessing and searching phrase. In the preprocessing phrase, it

builds a pattern occurrence table T[x]. The row of T is the number of all possible

alphabets that might appear in the text, and the column of T is the length of pattern.

If an alphabet x appear in the corresponding position of pattern, then set [x] bit to 0,

otherwise to 1.

Fig. II.7 is a processing to construct the T. Firstly, the pattern “ababc” will be

revere to “cbaba”. And finding the T[a], T[b], T[c] and T[d], if the “cbaba” appear in

the corresponding bit, set it to 0, otherwise to set to 1. For example T[a] is in the bit

3 and bit 5 of pattern “cbaba”, thus T[a] = 11010.

reverseababc cbaba
T[a] = 11010
T[b] = 10101
T[c] = 01111
T[d] = 11111

Fig. II.7. An Shift-or occurrence table example.

In the searching phrase, when a character ti of text is inputted, a bit vector Statei

has a bitwise operation Statei = (statei-1 << b) | T[ti] to update the Statei, in the exact

matching the shifted amount b is 1. When the leftmost bit of Statei is zero that

means a matching is found. Table II.7 is a searching example for pattern = ababc and

text = abdabababc. In the last column of Statei is 01111, the leftmost bit is 0, that

means it finds a matching.

TABLE II.7. A Shift-or example.

Text a b d a b a b a b c

T[ti] 11010 10101 11111 11010 10101 11010 10101 11010 10101 01111

Statei-1 <<

b
11110 11100 11010 11110 11100 11010 10100 01010 10100 01010

Statei

(Statei-1 <<

b | T[ti])

11110 11101 11111 11110 11101 11010 10101 11010 10101 01111

<< 11100 11010 11110 11100 11010 10100 01010 10100 01010

A.5.2. ADVANCED BIT PARALLEL ALGORITHMS

The advanced bit parallel can be applied to the shift-and or shift-or algorithms

and that includes the long pattern, class and multiple patterns features. For handling

the long pattern, we need to partitions pattern p into subpatterns pi, and builds an array

of D and B, process each part with basic algorithm, and if pi is found than it process

pi+1. For handling the class, the class is that a character of pattern can represent many

alphabets. This method needs to modify B table only, and have the ith bit set for all

chars belonging to ith position in pattern. As for handling multiple pattern, we have

two methods. The first way is that we can interleaves patterns and build the table in

preprocessing phrase, and no need to modify the updated function. In the searching

phrase, we shift r bit for each update for D and it just concatenate, where r is the

number of patterns. The second method is that we shift 1 bit, but we need to modify

the update function as rDD m)01(&)1(1−<<= .

A.5.3. BIT PARALLEL FOR SUFFIX AUTOMATON ALGORITHM

This algorithm uses bit parallel to simulate the suffix automaton algorithm. It is

able to handle class, multiple patterns, and allow errors, and faster than suffix

automaton from 20% to 25%, and its updated function is 1][&' <<= jtBDD which

is similar to shift-and algorithm. Table II8 is an example for pattern = {aabbaab},

text = {abbabaabbaab}, D=1111111, B={{a,1100110},{b,0011001}}, m=7, last = 7,

j=7.

TABLE II.8. An example of bit parallel for suffix automaton.

Text D&B[tj]<<1 D’ j Last

[abbaba(a)]bbaab
1111111

1100110
1100110 6 6

[abbab(aa)]bbaab
1001100

1100110
1000100 5 5

[abba(baa)]bbaab
0010000

1100110
0001000 4 5

[abb(abaa)]bbaab
0010000

1100110
0000000 3 5

Abbab[aabbaa(b)]
1111111

0011001
0011001 6 7

Abbab[aabba(ab)]
0110010

1100110
0100010 5 6

Abbab[aabb(aab)]
1000100

1100110
1000100 4 4

Abbab[aab(baab)]
0001000

0011001
0001000 3 4

Abbab[aa(bbaab)]
0010000

0011001
0010000 2 4

Abbab[a(abbaab)]
0100000

1100110
0100000 2 4

Abbab[(aabbaab)]
1000000

1100110
1000000 0 4

A.5.4. BIT PARALLEL FOR REGULAR EXPRESSION

Bit parallel can simulate Thompson and Glushkov NFA to matching the regular

expression patterns. Thompson NFA bit parallel updated functions are

][&)10|1((1
j

m tBDD −<<= and][' DED = functions. Where D is Sate mask, B is

Occurrence Table, m is string length, tj is current character, and][DE is null-closure

function that is reachable state from D with null input. The Glushkov NFA Bit

parallel has two updated function U
Di

iFollowDT
∈

=)(][and][&]['
jtBDTD = in its

searching phrase. T is a table that the states can be reached from an active state.

The B and D are the same as the Thompson NFA bit parallel.

II.4 HARDWARE IMPLEMENTATION FOR

STRING MATCHING

There are some existing hardware solutions for string matching algorithm. In

our study, we classify them into the three categories; they include systolic array,

parallel and pipeline hardware, and reconfigurable implementations.

B.1. SYSTOLIC ARRAY HARDWARE IMPLEMENTATION

Systolic array is suitable to implement the dynamic programming algorithm, the

[29], [30], [31] and [32] has proposed the systolic array architecture for dynamic

programming algorithms. Systolic array has the advantages that (1) does not need

the preprocessing time and extra space (2) the search time is constant. However its

drawbacks are that include (1) each cell systolic array require larger circuit than other

algorithms’ control circuits. (2) Its worst case is its best case, thus it is hard to

improve the performance, (3) it cannot perform the string matching for wildcard or

multiple patterns.

In the systolic array architecture of [30], the systolic array consists of n*m

processing element (PE), the n is length of text and m is the length of pattern. Fig

II.8. depicts a PE architecture, each PE can determine edit distance cost from previous

cost, that cost consists of PE’s substitution cost Sub=r(A(i)->B(j)), deletion cost

Del=r(A(i)->Null) and insertion cost Ins=r(Null->B(j)). The current PE’s edit

distance cost D(i,j) is the minimum value among Sub + D(i-j,j-1)，Del +D(i-1,j)，

Ins+D(i,j-1). Input A(i) and B(j) is the character at i，j index of the text and pattern,

and input D(i-j,j-1)，D(i-1,j)，D(i,j-1) are the left-upper, left and upper edit distance

cost. The final matched result is determined from the D(i,j) of the most right-bottom

PE.

Sub Ins

Del

+

+

+

Min

D(i,j-1)A(i)
D(i-1,j-1)

D(i,j)

D(i,j)D(i,j)

D(i-1,j)

B(j)

Fig. II.8. Processing element of dynamic programming systolic array.

B.2. PARALLEL AND PIPELINE HARDWARE IMPLEMENTATION

This kind of implementation is applied to the naïve string-matching algorithm,

which means no need any heuristics string matching algorithm. This algorithm

accelerates the string matching speed by utilizing hardware parallelism. The [33]

and [34] propose the pipeline and parallel architecture for the naïve string matching.

Fig. II.9 is a pipeline and parallel processing example that described in [33]. Firstly,

the input Text: {t1, t2, t3, t4, t5… } is shifted into the shift register S, to compared

with character P1, P2, P3, P4 of the Pattern by using comparator Cp. Then the final

matching result is accumulated by the and gates.

S S S S

Cp Cp Cp Cp

AndAnd

And

t5
t4
t3
t2
t1

t4
t3
t2
t1

t3
t2
t1

t2
t1

t1,t2,t3,t4,t5…

p1 p2 p3 p4

String Matching 0/1?

Fig. II.9. Pipeline and parallel processing example.

This kind of hardware acceleration has the merits that includes (1) no need the

preprocessing on pattern. (2) Simple algorithm that compared with other heuristic

algorithm, however, its drawbacks are (1) it pays the large circuit for parallelism and

(2) long delay for long patterns.

B.3. RECONFIGURABLE HARDWARE IMPLEMENTATION

This hardware implementation hardwired the string matching circuit and its

patterns directly into the reconfigurable hardware. The [35] and [36] demonstrated

the implementation of regular expression string matching based on the reconfigurable

FPGA architecture. Fig. II.10 is the technique used in [35], its regular expression

pattern is a(b|c)* and it is hardwired in the reconfigurable circuit in the preprocessing

phrase. In the searching phrase, the matching processing is that the characters of text

is shifted into the circuit cycle by cycle. After the input is done the final matching

result is reported after the few delayed cycles. The reconfigurable has the advantage

in (1) no need the preprocessing table, and the compact circuit for the small patterns

(2) more flexible than ASIC solution; however the reconfigurable hardware is much

expensive and slower than ASIC solution.

a b c

1

Input
character

Fig. II.10. Reconfigurable hardware acceleration example

II.5 DISCUSSION

In this section, we discuss the requirements, and analyze the architecture for

string matching algorithm, then we conclude a suitable algorithm and its hardware

architecture for string matching.

C.1. STRING MATCHING REQUIREMENTS

The functionalities of the string matching have the exact matching, class,

approximate, multiple patterns, wildcard, and regular expression string matching. In

the Snort 1.9, its rule for string matching has the following fields.

Ø Content: search for a pattern in the packet’s payload.

Ø Content-list: search for a set of patterns in the packet’s payload.

Ø Offset: modifier for the content option, sets the offset to begin attempting a

pattern match.

Ø Depth: modifier for the content option, sets the maximum search depth for a

pattern match attempt.

Ø Nocase: match the preceding content string with case insensitivity.

Ø Regex: wildcard pattern matching, this is not normal regular expression.

Ø Uricontent: search for a pattern in the URI portion of a packet.

Based on snort and our observation, thus, we can summary the requirements of

string matching as table 9. And we conclude the approximate, class, regular

expression and long pattern is not mandatory in string matching, but the multiple

patterns, wildcard, real-time and case sensitive are mandatory.

TABLE II.9. String matching requirements.

Functions Descr iption Requirement

Allow Error
Allow k number of character
error

Maybe

Multiple Pattern
Multiple pattern matching in one
iteration

Yes

Class
One character represents multiple
alphabet

Maybe

Wildcard Don’t care of multiple characters Yes

Regular
Expression

Kleene Star, Concatenation, Or Maybe

Long Pattern Support long pattern Maybe

Real Time On fly processing Yes

Case Sensitive Alphabet is case insensitive Yes

C.2. RECOMMEND HARDWARE IMPLEMENTATION OF STRING

MATCHING

Fig. II.11 illustrates the hardware structure for four main string matching

algorithms; (a) Bit parallel algorithm has an occurrence table to store the

preprocessing pattern data, and its control circuit is simplest among other algorithm, it

reads the text and table data to does the bitwise operation in the searching phrase. (b)

Filter algorithm, its control circuit is more complicated than bit parallel, because it

requires reading the good suffix shift table, bad character shift table, and computing

the shift amount for each input character in text. (c) Dynamic programming

algorithm, it has no central control circuit that is distributed in PE circuit as a systolic

array. This array grows as the pattern or text length, thus it has larger circuit size than

other algorithms normally. (d) Automaton Aho-Corasick algorithm, its control

circuit is more slower and larger than bit parallel algorithm, because it requires to

reads goto table, failure table, output table, then does the byte comparison in order to

determine next state and matched status.

Systolic
Array

Text

Pattern

Systolic
Array

Text

Pattern

Suffix Table
Control

Bad Char Table

Text

Suffix Table
Control

Bad Char Table

Text

(a) Bit Parallel – Shift-OR (b) Filter – Boyer Moore

(c) Dynamic Programming

Occurrence Table Control

Text

Occurrence Table Control

Text

(d) Automaton – Aho Corasick

Goto Table

Control

Text

Shift Table

Output Table

Goto Table

Control

Text

Shift Table

Output Table

Fig. II.11. Four main architecture of string matching algorithms.

Which string matching algorithm is suitable to be implemented in hardware?

We can consider them from three respects-capability, efficiency and implementation

cost. Table II.10 is a summary of our observation; we summarize the advantage and

disadvantage for string matching algorithms of the hardware implementations. In

our final recommendation, the bit parallel algorithm is recommended for hardware

implementation, because it is a simple and powerful string matching algorithm, it is

able to some heuristic techniques as well.

TABLE II.10. Analysis of hardware Implementations of string matching algorithms.

Taxonomy Advantage Disadvantage Recommendation

Filter
l Optimal average case

in time complexity

l Not powerful as the automaton

or bit parallel, support no

multiple pattern, and allow

error

l Need the adder and subractor

in each shifting calculation

Yes (Weak, no

multiple pattern

and need more

circuit than bit

parallel)

Dynamic

Programming
l No Preprocessing

l Less powerful, no support

multiple pattern and long pattern.

l Each systolic array cell

contain many adder and

subractor.

No (suitable for

single and short

pattern)

Bit-Parallel

l Good worst case in

time complexity

l Bitwise operation in

each character

comparison

l Powerful string matching

functionalities, the similar to

automaton.

l Pattern length is limited by bit

mask length

Yes (Strong, simple

architecture

suitable for

hardware

implementation)

Automaton

l Good worst case in

time complexity

l Flexible in pattern

length

l Powerful string matching

functionalities

l Full character comparison for

each character comparison

l Table size is larger than

Bit-Parallel

Yes (Weak,

because it need

more storage and

lookup time then

bit parallel)

II.6 CONCLUSION

 We have a comprehensive survey over the existing the string matching

algorithms and hardware implementations. Based on our observation, we have

identified four type string-matching algorithm that includes dynamic programming,

bit parallel, filter and automaton. The existing string matching hardwares focus on the

systolic array, parallel architecture, and reconfigurable mostly. But these are not

mandatory features that requires in the string matching hardware. String matching

hardware requires the high speed, low cost and powerful functionalities.

In our analysis hardware implementation of four main types of string matching

algorithms, the bit parallel algorithm is strong recommended for the hardware

implementation, because it has the powerful string-matching feature as automaton and

simplest control circuit for hardware implementation.

incoming packet

Path Computation

outgoing packet

hit(O): forward
O-Cache

Best-effort forward

hit(P): forward

lookup

P-Cache

miss(O)

miss(P)

CM

control
(to me)

CM: Control Module
LSDB: Link State Database
RBDB: Residual Bandwidth Database
FSDB: Flow State Database
O-Cache: Per-Flow Overflowed Cache
P-Cache: Per-Pair Cache
D-Cache: Per-Dst Cache
BE: Best-effort

LSDB
RBDB

D-Cache

FSDB

Filter

others

REFERENCE

[1] T. Chiueh and P. Pradhan, “High Performance IP Routing Table Lookup

Using CPU Caching,” in Proc. of IEEE INFOCOM, Apr. 1999.

[2] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding

Tables for Fast Routing Lookups,” in Proc. of ACM SIGCOMM’97, 1997.

[3] V. Srinivasan and G. Varghese, “Fast IP Lookups Using Controlled

Prefix Expansion,” ACM Trans. on Computer Systems, vol. 17, pp. 1 -40,

Feb. 1999.

[4] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using

Multiway and Multicolumn Search,” IEEE/ACM Trans. on Networking, vol.

7, no. 3, pp. 324-334, June 1999.

[5] S. Nilsson and G. Karlsson, “IP-Address Lookup Using LC-Tries,” IEEE

Journal on Selected Areas in Communications, vol. 17, pp. 1083-1092,

June 1999.

[6] S. Sikka and G. Varghese, “Memory-Efficient State Lookups with Fast

Updates,” in Proc. of SIGCOMM, 2000.

[7] P. Gupta, S. Lin, and N. Mckeown, “Routing Lookups in hardware at

Memory Access Speeds,” in Proc. of INFOCOM, 1998.

[8] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High-Speed IP

Routing Table Lookups,” in Proc. of ACM SIGCOMM, Sep. 1997.

[9] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High-Speed

Prefix Matching,” ACM Trans. on Computer Systems, vol. 19, pp. 440-482, Nov.

2001.

[10] M. A. Ruiz-Sanchez, et al., “Survey and Taxonomy of IP Address Lookup

Algorithms,” IEEE Network Magazine, pp. 8-23, Mar. 2001.

[11] M. Waldvogel, “Multi-Dimensional Prefix Matching Using Line Search,” in

Proc. of IEEE LCN, Nov. 2000.

[12] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet Classification

for Two-Dimensional Conflict-Free Filters,” in Proc. of IEEE INFOCOM,

2001.

[13] Merit Networks Inc., Internet Performance Measurement and Analysis

(IPMA) statistics and daily reports, in IPMA project,

http://www.merit.edu/ipma/routing_table/

[14] http://www.mcvax.org/~jhma/routing/

[15] P.A. Hall and G.R. Dowling, “Approximate string matching”, ACM

Computing Surveys, vol. 12, pp. 381-402, 1980.

[16] G. Navarro, “A guided tour to approximate string matching”, ACM

Computing Surveys, vol. 33, pp.31-88, 2001.

[17] P. Sellers, “The theory and computation of evolutionary distances:

pattern recognition”, Journal of Algorithms, vol. 1, pp. 359-373,

1980.

[18] V. A. Alfred and J. C. Margaret, “Efficient string matching: an aid

to bibliographic search”, Communications of the ACM, vol. 18, June

1975.

[19] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W.

Plandowski, and W. Rytter, “Speeding up two string matching

algorithms”, Algorithmica, vol. 12, pp. 247-267, 1994.

[20] M. Raffinot, “On the multi backward dawg matching algorithm

(MultiBDM)”, in Proceedings of the 4rd South American Workshop on

String Processing, pp. 149-165, Valparaiso, Chile, Nov., 1997.

[21] K. Thompson, “Regular expression search algorithm”, CACM, vol. 11,

pp. 419-422, 1968.

[22] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching

in strings”, SIAM Journal of Computing, vol. 6, pp. 323--350, June

1977.

[23] R. S. Boyer and J. S. Moore, “A fast string searching algorithm”,

Communications of the ACM, vol. 20, Oct. 1977.

[24] Josué Kuri and Gonzalo Navarro, ”Fast Multipattern Search Algorithms

for Intrusion Detection”, SPIRE 2000, pp. 169-180, 2000.

[25] R. A. Baeza-Yates and G. H. Gonnet, “A new approach to text searching ”,

in Proceedings of the 12th annual international ACM SIGIR confe rence

on Research and development in information retrieval, vol. 23, May

1989.

[26] S. Wu and U. Manber, “Fast text searching: allowing errors”,

Communications of the ACM, vol. 35, Oct. 1992.

[27] G. Navarro and M. Raffinot. “A Bit-parallel approach to Suffix

Automata: Fast Extended String Matching”, in Proc. CPM'98, LNCS 1448,

pp. 14-33, 1998.

[28] G. Navarro and M. Raffinot. “Compact DFA representation for fast

regular expression search”, in Proceedings of the 5th Workshop on

Algorithm Engineering, LNCS 2141, pp. 1-12, 2001.

[29] H.-M. Bluthgen and T.G. Noll, “A programmable processor for

approximate string matching with high throughput rate”, in Proc. of

IEEE International Conference on Application-Specific Systems,

Architectures, and Processors, pp. 309-316, 2000.

[30] N. Ranganathan, K. Remedios, and R. Sastry, “CASM: a VLSI chip for

approximate string matching”, in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 17, pp. 824-830, Aug 1995.

[31] Raghu Sastry and N. Ranganathan, “A Systolic Array for Approximate

String Matching”, in Proc. of ICCD 1993, pp. 402-405, 1993.

[32] N. Ranganathan and R. Motamarri, “A VLSI architecture for computing

the optimal correspondence of string subsequences”, in Proc. of CAMP

1997, Como, ITALY,Oct. 1997.

[33] K.M. George and H. P. Jin, “Parallel string matching algorithms based

on dataflow”, System Sciences, in Proc. of the 32nd Annual Hawaii

International Conference, 1999.

[34] P. Moisset, P. C. Diniz, and J. Park, “Matching and searching analysis

for parallel hardware implementation on FPGAs”, FPGA 2001, pp.

125-133, 2001.

[35] R. Franklin, D. Carver, and B. L. Hutchings, “Assisting Network

Intrusion Detection with Reconfigurable Hardware”, FCCM'02, 2002.

[36] Reetinder Sidhu and Viktor K. Prasanna, “Fast Regular Expression

Matching using FPGAs”, in IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2001), April 2001.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61

