(MPEWBC/ H. 264)

NSC91-2213-E-009-146 -
91 11 01 92 07 31

9 2 10 31

I

0
O

(MPEG AV C/H.264)

' 0
NSC 91 2213 E 009 146
92 11 1 92 7 31

SoC MPEG-4AVC H.264

1SO ITU-T MPEG-1 Video
MPEG-2Video MPEG-4Visua H.261 H.263

ISO ITU-T 2001
source

coding error-robustness mechanism ISO ITU-T

System-On-Chip
MPEG AVC/H.264

Keywords: video codec, embedded systems, SoC, MPEG-4, H.264

For the past decades, ISO MPEG and ITU-T have developed severa international video
compression standards, including MPEG-1 video, MPEG-2 video, MPEG-4 Visual, H.261, and
H.263, etc. These video codec standards were designed under the constraint of the hardware
capability at the time of standardization. Therefore, many compression agorithms were ruled
out because the complexities of these tools were too high, cost-performance wise, for existing
hardware. There has been alot of improvement on software and hardware capabilities for the
past few years. Therefore, MPEG and ITU-T started a new video codec project in December
of 2001. Thisnew standard is designed under the following guidelines: at |east twice the
compression efficiency of existing standards, coding efficiency gain more appreciated than
complexity-reduction, complexity scalability, and separation of source coding and
error-robustness mechanism. On a performance/memory-constrained platform, a tradeoff
between coding efficiency and complexity hasto be made. The analysis of the performance
tools provided by this new standard on an embedded platform will be evaluated in this project.
Since ISO and ITU-T are still collecting feedback from the industry and the academia about the
new standard, this project can provide useful information to 1ISO and ITU-T to help shape the
new codec. It can aso help our industry to development the next generation mobile handsets
and wireless devices.

With the next generation of video applicationsin mind, ISO MPEG and ITU-T VCEG
started a Joint Video Team (JVT) in December, 2001. Thetask of VT isto design anew high
performance video coding standard. The outcome, MPEG-4 AV C/H.264 [1], isa hybrid
motion-compensated transform video codec that aims to become an all-purpose International
Standard for future digital video applications. Initial results show that, at low bitrate range
(below 1 Mbps), it has about 30% to 50% coding efficiency gain over existing 1ISO and ITU-T
video standards such as H.263 version 2 and MPEG-4 ASP. At the sametime, it a'so showed
outstanding coding performance at high bitrate range (8 Mbps and above). It isgenerally
believed that with decent encoder optimization, H.264 can be used to store HD movies on
standard DVD media.

However, the exciting performance of the new codec does not come without a price.

Early reports showed that the decoder complexity is roughly three times higher and the encoder
complexity, when reasonabl e tools are used, can easily be ten times higher than, say, an
MPEG-4 Simple Profile codec. In this project, we studied the performance of different coding
tools of the codec. According to our investigation, two of the most time consuming tools are
the motion estimator and the in-loop filter. Therefore, we also designed efficient VLS|
architecture for acceleration of these two tools. The final result was published in a conference
paper (VLSI Design/CAD 2003).

The goal of this project isto carry out thorough study on MPEG-4 AVC/H.264. In
addition to evaluation of different coding tools, quality and complexity optimization for the
encoder will also beinvestigated. Based on the research, efficient algorithm and VLSI
accelerator architecture are designed for efficient embedded systems implementation, either
using a software-only approach or a hardware/software co-design methodol ogy.

There has been quite afew paper published about the new standard. In particular, there
was a special issue of IEEE Transaction on Circuit and Systems for Video Technology on H.264.
In[2] and [3], complexity analysis on the baseline decoder and an optimized decoder are
presented. However, for our project, we are mainly interested in encoder analysis. [3] and [4],
discusses the design of two complicated modules of H.264, namely CABAC and in-loop filter,
respectively.

There were also few papers published on the VLS design of some of the high complexity
modules such as motion estimator [11] and in-loop filter [12]. However, based on our study,
for a system as complicated as H.264 encoder, the best approach is to adopt hardware/software
co-design. A pure VLSl implementation of the codec istoo expensive.

-1-

On the other hand, a pure software implementation would be too slow for embedded real-time
operations. The best approach for implementing an H.264 codec is to adopt hardware/software
co-design approach.

Thefirst step of the investigation is to study the performance gain from different tools of
H.264. We used the reference software JIM6.1e to perform the analysis. An exampleis
showninFig. 1. InFig. 1, the base conditions (test curve O) of the test is as follows:

Base test conditions (test curve 0):

- Coding pattern: IBBPBBP ...

- Full search motion estimation, enable full quad-tree block partition, no Hadamard

transform, one reference frame

- Entropy coder: UVLC

- NoLoopfilter

Curves 1 through 5 added the following tools respectively: 5 reference frame, CABAC coder,
Hadamard transform, in-loop filer, and RDO. Asshown in Fig. 3, each tool (except for
Hadamard transform) contributes roughly equally to the coding gain.

foreman.qcif 10Hz for JM6.1e

40 T T
I I I I I I
| | | | | |
| | | | I 4
3B ---- r****r****r****r****T*;%ﬁ*&*
| | | | = |
I I I | = I
! ! | 2 | |
367777777777\77777\777}"»' T T T T
| | | |
| | |
o R F e
| . .
i AN
7] I 4 -] < 5+RDO
/ |
@ Z | O 4. + Filter
Do
| | + 3.+ Hadamard
J | | —
28””(””‘#””‘*”” A 2.+ CABAC
g | |
! ! ! + 1.+ Ref. frame (1to 5
S i M (s
| | |
9 I I | ¢ 0. Base
24 1 1 1 1 1
0 20 40 60 80 100 120 140

Rate (kbps)

Figure 1. Coding performance of different tools.

After further investigation, we decided to look into a fast algorithm for motion estimation
(ME) and see how the new algorithm impacts the coding efficiency. It isimportant to point out
that for old video coding standard such as MPEG-4 SP, afast ME algorithm can sometimes
achieves better quality than full search ME since motion vector overhead can be very high for
full search ME. However, with RDO, full search ME can always out perform afast search ME.
The fast algorithm we designed and the performance is discussed in section 6.2. Based on our
investigation, it is obvious that for embedded systems, it is very difficult to implement a high
quality H.264 encoder without ASIC accelerator. A comparison of memory bandwidth
requirement and computational requirement between the ME of H.264 and that of the MPEG-4

-2-

SPareshowninTableland 2. Therefore, the next step isto design an efficient architecture
for hardware acceleration. Theresult is presented in section 6.3.

Memory Memory Size
Requirement MPEG-4 SP H.264 Baseline Operation Number of 4x4 SAD (30 fps)
Current Frame 384x320 384x320 MPEG-4 SP | H.264 Baseline
Reference Frame | 384x320 3x384x320 8x8 (Int-pel) | 320x10° N/A
Search Window 8x8 (Sub-pel) | 1.5x10° N/A
Integer-pel | 48x48 48x48 4x4 (Int-pel) | N/A 385x10°
Half-pel 8x8x8x4 8x4x4x16 4x4 (sub-pel) | N/A 3x10%(full, 1/2,1/4-pel)
Quad-pel N/A 8x4Ax4x16 Total SAD 321.5x10° | 388x10°
Current MB 16x16 16x16
Total Memory | 250368 498176 Table 2. #SAD for SPand H.264 Basdline

Table 1. Memory Requirement in Bytes

In this section, we presented afast motion estimation algorithm in section 6.1 and an
efficient VLSI architecture for hardware accelerator in section 6.2.

6.1 Fast motion estimator for H.264
For H.264 encoders, there are two major search dimensions. Thefirst oneisthe

gpatio-temporal dimension (that is, determining both the reference frame(s) and the best motion
vectorsin the target reference frame). The second search dimension is the motion partition
dimension (that is, determining block partition types and the corresponding vectors for each
sub-partition), which is usually referred to as the mode decision problem. A hierarchical
approach in spatio-temporal dimension and a bottom-up merge approach in motion partition
dimension are proposed here to reduce the number of candidate match points.

Furthermore, when performing sub-pixel motion estimation (1/2-pel or 1/4-pel), smple
on-the-fly bilinear transform interpolation instead of the full 6-tap filter plus linear interpolation

! is used to compute the SAD for motion estimation sincethisisa
good low-complexity approximation of the coding residual energy.

6.1.1 Integer-pixel hierarchical motion estimation in spatio-temporal domain
The search algorithm first starts with hierarchical 16x16-motion search in spatio-temporal
dimension. There have been quite afew literatures on multiple-step search in spatial domain
([6],[7]). We extend thisidea acrosstemporal domain for multiple candidate reference frames.
Asdepicted in Figure 2, the best estimate from the most recent reference frame is used as the
initial search point in the 2nd-recent reference frame, and the search window in that frameis
-3-

significantly reduced. The rationale behind thisideais that the effectiveness of multiple
reference frames for most sequences reduces rapidly along the reverse temporal direction [8].

6.1.3. Fast sub-pixel vector and partition mode deter mination

Once the best 16x16 motion vector islocated in spatio-temporal domain, a second stageis
applied to determine motion partition mode and sub-pixel motion vectors. Naturally, thisisa
suboptimal solution to the general multi-dimension search problem. To reduce the possibility
of being trapped in local minimum, M best-match candidates can be used asinitial estimates for
the second stage of motion search. The number M can be chosen in real time based on the
computational load.

There is alarge amount of combinations of macroblock partition modes. Since the focus
of the paper is about motion compensated partitions, intra-block modes (either 16x16 or 4x4)
are ignored here for the simplicity of discussion. All together, there can be 2+44 motion
sub-partition modes for each macroblock (excluding 16x16 mode). Obvioudly, the search
spaceistoo large for an embedded encoder. The key idea here isto perform only the 16 4x4
motion estimation for each macroblock using the integer-pixel motion vector as theinitial guess
with a search space of £2 pixels. The resulting 4x4-block sub-motion vectors and the
corresponding SADs will be used to decide the macroblock partition mode. For example, if
two neighboring 4x4 blocks has similar (subject to some threshold) motion vectors, they will be
merged into asingle 4x8 (or 8x4) partition. The threshold must take into account both the
motion vector coding overhead and the SAD values.

Once the partition mode is determined, sub-pixel motion estimation will be performed for
each sub partition. Note that after the partition determination stage, we may end up with a
single 16x16 partition because all the 4x4 sub-partitions are merged. The search for sub-pixel
motion vector is done around the previously computed integer motion vector for each
sub-partition, with a+1 integer search space. Both half-pixel and quarter-pixel positionsin this
space will be searched. As mentioned before, the interpolation process used here is simply
on-the-fly bilinear transform instead of the full 6-tap filtering plus linear interpolation as
specified inthe standard. This way, we can greatly reduce both the memory complexity and
computational complexity.

6.1.4 Experiments
The standard test sequences FOREMAN and STEFAN are used to show the performance of
the proposed algorithm (Fig. 2). Both sequences are in QCIF resolution, 15 fps. For H.264,
the encoder isbased on IM6.1e. RD optimization, three reference frames, IPPP... coding
pattern, and CAVLC areused. Motion search range is£16, and all subblock types are used.
In the proposed approach, a step size of 8 isused for TWSS. Three best candidates are
selected for the next level TSS refinement. The step sizesfor TSS are 3, 2, 1, respectively for
the 1st, 2nd, and 3rd steps. On-the-fly constrained bi-linear transform is not used in these
experiments. The results for MPEG-4 Simple Profile using M S reference software are also
-4-

provided as a comparison.

RD Curve of FOREMAN 38 RD Cunve of STEFAN
40

38 o 36

36 1 34

32

30

DNZT A~
)
]

TNZ0 A~

30 28

/1] AU SU— W——— S——————— S Full Search L e s e Full Search .4
—— RSME —— RSME
MPEG-4 SP MPEG-4 SP
2 I I 24 I I I
20 40 60 80 100 120 140 160 50 100 150 200 250 300 350 400 450 500
Rate (kbps) Rate (kbps)

Figure 2. FOREMAN and STEFAN test results

6.2 VL SI Architecture Design

Due to the high complexity of H.264, it is very difficult to have a embedded real-time
solution without resorting to hardware accelerators. For this purpose, we also investigated and
designed efficient VLS| architecture for ME of H.264. The architecture of the motion
estimator isshown in Fig. 3. The current and reference frame buffers are stored in the external
memory (SDRAM). Up to four frames can be stored in the frame buffers at the same time
during motion estimation and in-loop filtering. Y CBCR datais separately stored in the
memory. Motion estimation is performed on the LumaY-channel. The Memory Ctrl module
handles the interface with memory modules and the EBUS bus (AHB bus protocol is used for
the EBUS in the platform). Two internal memory buffers are used for storing the search
windows. To fully utilize the memory for motion estimation and to meet the compl exity of
memory bandwidth for multiple reference frames access for H.264 encoders, the write/read
pipeline arrangements of the two memory buffers for loading reference search window and
output to those SAD units for motion vector search during the integer-pixel ME among three
reference search windows for one macroblock are specified in Fig. 4.

Frame Buffer

! » EBUS

<
Me

Figure 3. Architecture of Motion Estimation Design
-5-

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

ﬁ j

Pipe 0 l Pipe 4

Load SW(1) Mem Mem | oad SW(3) Mem Mem
A B A B
Mem Mem Ref
A B N I

Pipe 1 1 1) min SAD
16x16 SAD(1) ey Pipe 5 \of Refl,
3 A B

(elements of 4x4 SAD) 16x16 SAD(3) l

Load SW(2)

Load SW(2) Mem
A B . NDI I

Pipe6 ool
““““““““““““ 4x4 SAD(2) | &

Al
Mem Load SW(2)\ pat1 53 B
B 2,

Pipe 3 A
16x16 SAD(2) l l

PE-array
(elemeﬁg-s;r;y“ SAD) (elements of 4x4 SAD)

4x4 ME
(including quarter-pel ME)

Figure 4. Memory pipeline control for 16x16 ME

ISO/IEC JTC 1/SC 29/WG 11, I SO/IEC 14496-10 Information technology- Coding of
audio-visual objects- Part 10: Advanced Video Codec, FDIS, ISO/IEC N5555, Pattaya,
March, 2003.
M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AV C baseline profile decoder
complexity analysis,” IEEE Trans. Circuits Systems for Video Technology, vol. 13, No. 7, pp.
704-716, July. 2003.
V. Lappalainen, A. Hallapuro, and T.D. Hamalainen, “H.264/AV C baseline profile decoder
complexity analysis,” IEEE Trans. Circuits Systems for Video Technology, vol. 13, No. 7, pp.
717-725, July. 2003.
P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz, “ Adaptive deblocking filter,”
|EEE Trans. Circuits Systems for Video Technology, vol. 13, No. 7, pp. 717-725, July. 2003.
D. Marpe, H. Schwarz, and T. Wiegand, “ Context-based Adaptive Binary Arithmetic Coding
in the H.264/AV C Video Compression Standard,” 1EEE Trans. Circuits Systems for Video
Technology, vol. 13, No. 7, pp. 717-725, July. 2003.
R. Li, B. Zeng, and M..L. Liou, “A new three-step search algorithm for block motion,” IEEE
Trans. on Circuits and Systems for Video Technology, vol. 4, No. 4, pp. 438-442, Aug. 1994.
L.-M. Poand W.-C. Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion
Estimation,” IEEE Trans. Circuits Systems for Video Technology, vol. 6, No. 3, pp. 313-317,
Jun. 1996.
J. Boyce, “Coding Efficiency of Various Numbers of Reference Frames,” JVT-B060, 2™ Joint
Video Team Meeting, Geneva, Switzerland, Jan. 29-Feb. 1, 2002.
F. H. Cheng, S.-N. Sun, “New Fast and Efficient Two-Step Search Algorithm for Block
Motion Estimation,” IEEE Trans. Circuits for Systems Video Technology, vol. 9, No. 7, pp.
977-983, Oct. 1999.

-6-

[10] Peter Kuhn, “Algorithms, Complexity Analysis and VLSI Architecture for MPEG-4 Mation
Estimation,” KLUWER ACADEMIC PUBLISHERS, pp. 8, 1999

[11] Y-W Huang, T-C Wang, B-Y Hsieh, and L-G Chen, “Hardware Architecture Design for
Variable Block Size Motion Estimation in MPEG-4 AVC/IVT/ITU-T H.264,” 1ISCAS 2003,
Bangkok, Thailsnd, p. [1-796, May 2003.

[12] Y-W Huang, T-W Chen, B-Y Hsieh, T-C Wang, T-H Chang, and L-G Chen, “Architecture
Design for Deblocking Filter in H.264/JVT/AVC,” ISCAS 2003, Bangkok, Thailsnd, p. 1-693,
May 2003.

[13] T. Koga, K. linuma, A. Hirano, Y. ljima, T. Ishiguro, “Motion compensated interframe
coding for video conferencing,” in Proc. Of NTC, Dec. 1981

[14] Yuei-Yi Wang and Chun-Jen Tsai, “An Efficient VLSI Architecture for Fast Motion
Estimator for MPEG-4 AV C/H.264 Encoders,” Proceedings VLS Design/CAD 2003,
Hua-Lian, Taiwan, August 2003.

[
[
H.264
Motion Estimator H.264
VLS
[
[
[14]
[
H.264 CABAC
4x4 block motion mode partition
VLS memory bandwidth

