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ABSTRACT
Per iodic structures of the resonance type are 
investigated with a focus on the utilization of 
structure dispersion to achieve a wide-band 
operation for  the sur face-wave suppression. Both 
approximate and exact formulations are 
presented to illustrate wave processes involved in 
the resonant structure and to develop useful 
cr iter ia for  design purpose.

I. INTRODUCTION
The resonance-type periodic structures have 

attracted considerable attentions in the recent
literature, and many applications have been 
demonstrated [1, 2].  So far, most of the research 
work has been limited to experimental studies and 
numerical simulations, but the physical mechanism 
involved in such a class of structures remains to be 
better understood.  As far as periodic structures are 
concerned, at a given frequency, there are two 
important factors affecting their guiding 
characteristics: the basic dispersion and the period of 
the structures.  The purpose of this paper is to 
provide a theoretical basis for exploring the 
utilization of resonance-type periodic structures for 
the suppression of surface waves.  As an example, a
corrugated metal surface is carefully studied to 
provide reliable numerical data for physical 
explanations.  Specifically, the major contributions 
of this research work may be summarized as follows:
(1) to provide a clear physical picture of the 

wave processes involved in the resonance-
type periodic structures.

(2) to clarify the basic concepts and to evaluate 
the validity of modeling a periodic structure 
as an impedance surface.

(3) to develop useful criteria for the design of 
the periodic structures by utilizing the 

structural resonance for the broadband 
operation of the Bragg reflection.

II. STATEMENT OF PROBLEM
The inset in Fig. 1 shows the configuration of a 

periodic structure that is composed of infinitely many 
identical cavities, each with an opening to the air 
half-space.  With the coordinate system attached, the 
corrugated structure has a period d in the x-direction 
and is uniform in the y-direction.  Each cavity may be 
viewed as a parallel-plate waveguide that is 
completely short-circuited at one end and partially 
short-circuited at the other end.  The opening of each 
cavity has the width a and is centrally located on the 
top cover.  Furthermore, the structure is horizontally 
infinite in extent and has a height h.  Hessel and 
Oliner [3] had used such a structure as an example to 
explain Wood’s anomaly in the scattering of light 
and to establish a basis for modeling a periodic 
structure as an impedance surface.  Assuming that 
both the structure and the incident wave are invariant 
in the y-direction, we may treat the guiding of either 
TE or TM wave separately as a boundary-value 
problem.  For practical interest, we try to keep the 
height of the corrugated structure sufficiently small, 
so that we may consider the TM polarized wave only, 
although our theory applies to the other polarization, 
as well.

III. METHOD OF ANALYSIS
Since the structure under consideration is periodic 

along the x-direction, a set of Fourier components or 
space harmonics is generated in the air region, with 
the propagation constant of the nth harmonic given by:

...2,1,0,nfor       ,
d

2nkk xxn ±±=+= π
(1)

國科會專題研究計劃精簡報告
二維週期結構理論應用研究(總計劃) 
89-2213-E-009-223



where kx is the propagation constant of the 
fundamental harmonic.  In the air region, each space 
harmonic propagates independently as a plane wave, 
and the general field solutions can be expressed as a 
superposition of the complete set of space harmonics.  
On the other hand, in the corrugated region, the 
general field solutions can be easily represented as a 
superposition of the parallel-plate waveguide modes.  
By imposing the boundary conditions at the 
structure-air interface, at z = 0, the existence of non-
trivial solution in the absence of any incident wave 
leads to the transverse-resonance condition:
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Such an equation defines the dispersion relation to 
determine the guided modes of the corrugated 
structure.  Here, P is the coupling matrix with its 
elements that can be obtained analytically from the 
overlap integrals of the waveguide modes in the 
corrugated region and the space harmonics in the air 
region.  inZ is a diagonal matrix with the input 
impedance of the mth parallel-plate waveguide mode 
as its mth element, as given by:
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where κm is the propagation constant in z-direction of 
the mth parallel-plate waveguide mode, and can be 
given as:

2

2
1 






−=

d
mkom

λκ (4)

Finally, Za is also a diagonal matrix with the wave 
impedance of the nth space harmonic in the air region 
as its nth diagonal element, as given by:
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where kzn is the propagation constant in the z-
direction of the nth space harmonic.  Thus, all the 
parameters in (2) are defined.

The dispersion relation in (2) is a determinantal 
equation of infinite order; it requires a suitable 
truncation to a finite order to yield numerical results.  
We have implemented a computer code on the basis 
of the exact formulation described above to 
determine the dispersion roots of the structure under 
various conditions.  The results so obtained and their 
physical implications are given in next section.

IV. NUMERICAL RESULTS AND 
DISCUSSIONS

Based on the exact formulation described in the 
preceding section, we are now in a position to carry 
out both qualitative and quantitative analyses of 
guiding characteristics of the corrugated metal 
surface.  Before embarking on an elaborate numerical 
analysis, it is instructive to consider first the 
approximation by only one single mode in the 
parallel-plate waveguides.  The periodic structure 
may then be replaced by a uniform surface having the 
impedance that is determined by the input impedance 
in (3) for any waveguide mode of interest.  The 
propagation constant of a surface wave guided by 
such an impedance surface can be obtained explicitly 
as:
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Graphically, such a simple expression can be plotted 
into curves in the form of the Brillouin diagram, and 
the results are shown in heavy solid lines in Fig. 1 for 
the lowest four modes, m = 0, 1, 2, and 3.  As far as 
the periodic structure is concerned, these four curves, 
and their reflection-symmetric ones with respect to 
the vertical axis may be regarded as the basic 
dispersion curves.  For the overall structure, the 
Brillouin diagram can be constructed approximately 
by the periodic translation of the basic dispersion 
curves along the horizontal axis.  It is well known 
that strong interactions of waves may take place in 
the vicinities of the intersection points among the 
unperturbed dispersion curves, as marked by the A’s, 
B’s and C’s in Fig. 2.  This allows us to identify 
easily possible physical effects associated with the 
structure and will be particularly useful for an initial 
design in practice.

It is well known that the Bragg phenomenon will 
occur at kxd/2π = 0.5n, where n is an integer running 
from zero to infinity.  For example, for the 
fundamental mode (m = 0) in Fig. 1, the first-order 
interaction between the fundamental harmonic (n = 0) 
and the first higher harmonic (n = -1) occurs in the 
vicinity of the intersection point A.  Similarly for the 
next two higher-order modes, the intersection points 
are marked by B for m = 1 and C for m = 2.  It is 
interesting to note that at the point marked by A′, two 
physical processes take place: one is the onset of 
propagation of the first higher order mode (m = 1) 



and the other is the intersection point of two 
harmonics, n = 0 and n = -1, of the same mode.  
Similar explanation may be given for the points 
marked by B′ and C′ for the higher-order modes.  
Thus, we should expect stopbands to arise in the 
vicinities of not only the points marked by A, B, and 
C, but also those marked by A′, B′ and C′.

Based on the exact dispersion relation in (2), we 
have carried out a systematic evaluation of the 
guiding characteristics of the corrugated structure, 
and the results are displayed in the form of the 
Brillouin diagram in Fig. 2 for both real and 
imaginary parts of kx.  It is noted that the shaded area
denotes the bound-wave region; otherwise, it is the 
radiating or leaky-wave region.  When the frequency 
is increased from a small value, the real part of kx

falls first in the bound-wave region and the 
imaginary part of kx stays zero until the occurrence of 
the stopband.  Thereafter, the guided wave enters 
into the leaky-wave region, and the value of kx stays 
complex, with non-zero imaginary part in general.

Returning back to Fig.1, if we start again from the 
low frequency range, the dispersion curve should 
follow closely that of the fundamental mode and 
continues up to the vicinity of the intersection point 
A, where a stopband occurs; this is indeed the case, 
as is evident in Fig. 2.  It is striking to observe that 
when the frequency is increased further above the 
first stopband in Fig. 2, the actual dispersion curve 
does not follow that of the fundamental mode any 
longer; it jumps to that of the next high-order mode.  
Such a phenomenon of jumping from one mode to 
the next higher mode seems to be always the case, as 
is evidently seen in the vicinities of the points 
marked by B and C.  This means physically that in a 
different frequency range, the model of impedance 
surface has to take the input impedance of a different 
waveguide mode.  Thus, we may conjecture that the 
fields inside the corrugated regions are dominated by 
a single mode that may change from one to another, 
depending on the operating frequency.  Furthermore, 
comparing Figs. 1 and 2, we observe that the first 
stopband exists over the range of frequency between 
the pair of points A and A′.  In other words, in 
contrary to our original expectation, we do not have 
two stopbands separately around the points marked 
by A and A′.  A physical interpretation may be given 
as follows.  When the fundamental mode reaches the 
stopband region, the real part of kx in the air region 

matches with the transverse propagation constant of 
the first higher mode of the parallel-plate waveguides, 
at the value kxd/2π = 0.5.  With such a phase 
matching condition, the fundamental and the first-
order modes are strongly coupled, resulting in a 
single stopband, instead of two separate ones.  A
similar explanation may be given to the stopbands 
around the points B and C in Fig. 2 and they can be 
related back to the pair B and B′ and the pair C and 
C′, respectively.

To substantiate the explanations described above, 
we plot the amplitudes of the first four modes of the 
parallel-plate waveguides in Fig. 3.  In the low 
frequency range, the fundamental mode is obviously 
dominant, but the contribution from the next higher-
order mode, m = 1, increases significantly with 
increasing frequency.  Toward the frequency kod/2π
= 0.5, we see a sudden switch of domination from the 
fundamental mode to the next higher mode.  A 
similar behavior occurs also around the frequencies 
kod/2π = 1.0 and 1.5.  This demonstrates the effect of 
the structural resonance, and suggests the utilization 
of the mode switching for the design of the 
dispersion characteristics of a periodic structure.

In Fig. 2, the first stopband is in the bound-wave 
region and it will be good for the application to the 
suppression of surface waves.  In an attempt to 
increase the width of the stopband in the bound-wave 
region, Fig. 4 shows the effect of the structure height 
on the width of the first stopband.  Here, we can 
achieve a bandwidth of over 20% of the operating 
frequency, while still keeping the operation with a 
single mode.

V. CONCLUSIONS
We have presented a rigorous treatment of guided 

waves on a corrugated metal surface.  Numerical 
results are systematically carried out and are 
displayed in the form of the Brillouin diagram and 
also in the form of amplitude distribution of the 
waveguide modes, in order to identify the wave 
interactions and to show the stopband structure of the 
dispersion curves.  The approximation of a 
resonance-type periodic structure by an impedance 
surface is examined and a simple criterion is 
suggested, so that the frequency dispersion of the 
impedance surface may be accounted for by 
switching from one waveguide mode to another in a 
single-mode approximation.  The effect of the 



structural dispersion on the Bragg phenomenon is 
carefully evaluated, and it is demonstrated that a 
wide stopband can be achieved with a proper design 
of the resonance-type periodic structure.  Much more 
numerical data have been obtained and will be 
presented in the talk.
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   Fig. 1- Unperturbed dispersion curves for the
case of h = 0.21d and a = d.
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   Fig. 2- Brillouin diagram of a corrugated metal
surface for the case of h = 0.21d and a = d.

Fig. 3- Variation of amplitudes of parallel-plate waveguide
             modes against normalized frequency kod/2π for the
             corrugated metal surface with the parameters:
             h = 0.21d and a = d.
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     Fig. 4- Variation of the width of stopband with respect
to the structure heights for the case of a = d.
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