X86

O U oo

0
NSC89 2213 E 009 205
89 8 1 90 7 31

89 10

31

X86

Design a speculative memory access unit of x86 super scalar processor
NSC-89-2213-E-009-205

89 8 1

x86
x86
x86
2
2
x86
Abstract
X86 instruction set has complex

memory addressing modes and address
calculations, and thus become difficult to
achieve high clock rate. Moreover, with
high memory access frequency, x86
superscalar processors especially need
paralel memory access techniques to

0 7 31

support enough data bandwidth. In this
project, we design the address and
dependence prediction strategies for
memory accessing of high-issue-rate x86
superscalar processors, and build a
prototype of our speculative memory access
unit to evaluate the performance and
feasibility of the design.

Our speculative memory access
strategies handle the address and dependency
prediction mechanism in paralel with the
traditional address calculation mechanism.
To increasing the prediction accuracy, we
develop new address and dependency
prediction policies. We improve the
dependency prediction by adding forwarding
prediction ability, refining the predictions
with 2-bit counter, and filtering out the
error-like predictions with another 2-bit
counter. To reduce the miss-penaty, we
consider the prediction stage and the
strategies for handling loaded data
Experiment results show that, by reducing
the misspenaty and increasing the
prediction accuracy, the predictive
scheduling proposed in this work can
significantly improve the performance.

Keywords x86 instruction set, superscalar,
memory access, speculative execution,
address prediction, dependency prediction

For x86 program, the proportion of
memory access instructions is relatively
high and a specific address is likely to be
accessed repeatedly in a short period
because of their register-to-memory or
memory-to-memory instruction set

architectures and limited register sets. For
the consistency of memory, stores are
executed in the origina program order.
However, loads can be executed without
obeying the original program order, and thus
several scheduling policies of memory
accesses such as load bypassing and load
forwarding have been developed [1].
However, in these conservative scheduling
policies, a load cannot be issued or
forwarded if any addresses of its previous
stores is unsolved, i.e. has not been
generated. This problem becomes much
severer in an x86 superscalar
microprocessor because the pipeline is
lengthen for address cal culation.

Many prediction techniques, such as
address prediction, dependency prediction,
and value prediction, have been developed
on RISC for resolving the unsolved address
problem [2][3]. These techniques predict the
addresses, dependencies, or even data of
loads at the fetch stage. However, when
applying to x86 processors, which generally
have longer pipelines than RISC
microprocessors, al these techniques have
to suffer the lengthen penalty of prediction
errors and thus cannot work effectively.
Therefore, we enhance these prediction
techniqgues by increasing the prediction
accuracy and reducing the miss-penalty.

To increasing the prediction accuracy,
we develop new address and dependency
prediction policies. We choose the 2-stride
scheme in [3] as our address prediction, and
choose the store-load pair scheme in [5] to
develop our dependency prediction. To
reduce the miss-penaty, we consider the
prediction stage and the strategies for
handling loaded data.

3.1 Prediction Policies of L oads

We develop the prediction policies,
including address prediction, pre-load, and
three dependence/forwarding predictions, to
increase the prediction accuracy.

3.1.1 Address Prediction

We choose the 2-stride scheme in [4] as
our address prediction (AP) because its
outstanding accuracy and reasonable
implement cost. AP predicts the data
addresses of loads using a 2-stride address
predictor shown in Figure 1, whose address
prediction table (APT) stores the information
generated by previous loads as a
set-associative cache.

Load PC Address Prediction Table (APT)

<y> <lag: <last address> <siridel> <siride2-

Update siride2

E |
v
+

Predied addms&? Update siridel ifequal
Figure 1. Block diagram of 2-stride address predictor

3.1.2 Pre-Load

Preload (PL) is the simplest
dependency prediction policy that predicts
every load as non-dependent. In PL, loads
can be issued to the data cache without the
address conflict check once its data addressis
calculated or predicted by AP. PL delays the
address conflict checking after the data cache
access, and thus loads can be executed
without being stalled by unsolved stores.

e —]

3.1.3 Dependency/Forwarding Prediction

We choose the store-load pair schemein
[5] as the base to develop our dependency
prediction for its accuracy and reasonable
implement cost. By adding the forwarding
prediction scheme to predict if the value can
be forwarded from the unified memory
access buffer (UMAB), the dependency
prediction becomes the
dependency/forwarding prediction (DP). DP
predicts the dependency using a store-load
pair predictor shown in Figure 2, whose
dependency/forwarding prediction table
(DPT) stores the information generated by
previous loads as a set-associative cache.
DPT isindexed by the PC of the encountered
load.

Load PC| Dependency/Forwarding
Prediction Tahle (DPT)
=vw= =tags =fvrd= =fvrd store PC=
UMAB
..n—
‘I—I.it?
Bypassing or Forwarding
Figure 2 The block diagram of store-load pair predictor.
314 Counter-based Dependency

/Forwar ding Prediction

To improve the accuracy of DP, we
refine DP to become the counter-based
dependency/forwarding prediction (CDP).
CDP predicts the dependency using a
counter-based store-load pair predictor
shown in Figure 3 whose counter-based DPT
(CDPT) is modified from DPT by adding a
classify counter field. The classify counter
field is a 2-bit saturation counter to keep the
tendency of independence of aload.

Load PC) Counter-hased Dependency/Forwarding

Prediction Table (CDPT)
v <tage <ghssie. <fwd: <fwd store PC>

Bypassing or Forwanling

Figure 3. The block diagram of counter-based store-load pair
predictor.

3.1.5 Selective Dependency/Forwarding
Prediction

To further improve the accuracy of CDP,
we refine CDP to become the sdective
dependency/forwarding prediction (SDP).
The empirical observations of [4] notify that
relatively few loads cause most of the
miss-predictions, and filter out these loads
will increase prediction accuracy. SDP
predicts the dependency wusing a
counter-based store-load pair predictor with
filter shown in Figure 4 whose selective DPT
(SDPT) is modified from CDPT by adding a
filter counter field. The filter counter is a
2-bit saturation counter to keep the tendency
of miss prediction.

Load PC Selective Dependency/Forwarding

Prediction Table (SDPT)
<yr <tag> <§m> <fwd> <fiwd store P C> < fibler -

UMAB

a

Y Forwanding?

Byp ass logic |-4———————————

[t

Byp assing or Forwanling

Figure 4. Block diagram of the counter-based store-load pair
predictor with filter.

3.2 Predictive M odels of L oads

To reduce the miss-penalty of prediction,
we consider different prediction stage and
send —back strategies.

3.2.1 Prediction at Different Stages

Traditionally, the predictions are made
at fetch cycle as show in Figure 5(a) because
it is the first cycle the PC of aload can be
obtained. However, in the lengthen pipeline
of x86, the miss-penalty is large enough to
cancel out the advantage from prediction
early. A delayed prediction as show in Figure
5(b) is developed by delaying the prediction
until an instruction has been decoded and
dispatched to reduce the miss-penalty. When
predicting at front-end, all the predicted |oads
must stores in prediction validation buffer
(PvB). By delaying the prediction after
instruction dispatch, these predicted loads be
stored in UMAB thus saving the hardware
cost. The delayed prediction also let the
prediction work only on loads and the
prediction information can be validated in
time thus dlightly increases the prediction
accuracy.

3.2.2 Send-back Strategies of L oaded Data

In general case, data loaded by a
predicted load may be used immediately
without verification by the succeeding
operations. Then, once a miss prediction is
detected, the miss-predicted load and all its
succeeding operations must be recovered. We
call this an aggressive send-back strategy of
loaded data (ASB). However, we found that
no verification of loaded data is too
aggressive for some aggressive prediction
policies. Thus, we develop a conservative
send-back strategy (CSB) to check the

accuracy of load prediction before the loaded
datais used in order to eliminate the recovery

penalty.

‘ Fetcher | ‘ Predictor |

T4
Decoder PVB
¥ POPs ¥ POPs

‘ Dispatcher HReorder Buffer |

[]

(b) Predictien after dispatch stage

‘ Dispatcher HReorder Buffer ‘

(&) Prediction at fetch stage
Figure 5. Prediction at different stages.

3.3 Performance Analysis

The prediction policies PL, DP, CDP,
and SDP can al combine with AP and
become new policies PL_AP, DP_AP,
CDP_AP, and SDP_AP. The prediction
stages, front end (F) or delayed (D), and
send-back strategies, aggressive (A) or
conservative (C), can be combined to form
four predictive models: F A, D_A, F C, and
D_C. The average speedups of the prediction
policies and the predictive models over the
load forwarding policy are shown in Figure 6.
The average speedups are the harmonic
means of the speedups of the eight
SPECint95 benchmarks. The prediction
policies are distinguished by the predictive
model. The APT, DPT, and SDPT are all
4K-entry and 4-way associative, which are
chosen for performance saturation.

=
S
2

Fa C

Figure 6. Performance comparison of various prediction policies
and predictive models.

We have examined the address and the
dependency prediction policies, prediction
stage, and send-back strategies for memory

accesses in x86 superscalar processors. The
traditional prediction techniques developed
on RISC cannot work effectively on x86
because of the lengthen penalty of prediction
misses. However, combine the address and
the dependency prediction can achieve good
performance. Furthermore, we develop CDP
and SDP to increase the prediction accuracy,
and develop the delayed prediction and CSB
to reduce the miss-penaty. The delayed
prediction would not decrease the
performance but can reduce hardware cost.

CSB €diminates the pendties of
miss-predicted loads and the recovery
mechanism; thus let AP become a

cost-effective selection. While a carefully
designed SDP with ASB can achieve the
highest performance. Simulation results show
that SDP_AP can achieve 1.33 speedup over
the traditional load-forwarding policy under
commercia programs and next generation
designs.

[1] M. Johnson, Superscalar
Microprocessor Design, Prentice Hall,
1991.

[2] R.J. Eickemeyer and S. Vassiliadis: ‘A
load instruction unit for pipeline
processors,’” IBM Journal of Research
and Development, vol. 37, 1993,
pp.547-564.

[3] G. Z.Chrysosand J. S. Emer, "Memory
Dependency Prediction using Store
Sets," ISCA-25, 1998.

[4] Y. Sazeides and J. E. Smith, "The
Predictability of Data Values," In the
Proceeding of Micro-30, December
1997.

[5] A. Moshovos, S. E. Breach, T. N.
Vijaykumar, and G. S. Sohi, "Dynamic
Speculation and Synchronization of
Data Dependences,” In Proc. of the 24th
Annua International Symposium on
Computer Architecture, 1997.

	page1
	page2
	page3
	page4
	page5

