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Abstract

We consider inference for the
poly-inverse Gaussian model, which arisesin
competing risk scenarios when the risks have
independent inverse Gaussian distributions.
This article deals with maximum likelihood
estimation of the parameters of the
poly-inverse Gaussian distribution. Due to
the complexity of the likelihood, direct
maximization is difficult. An EM type
algorithm is provided for the maximum
likelihood estimation of the poly-inverse
Gaussian distribution. They are then applied
to obtain the reliability function. Next, we
study the confidence intervals of the
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parameters and the reliability function basing
on the large sample theory and the bootstrap
method. Furthermore, we also explore the
influences after changing some competing
risks of the unit. The maximum likelihood
estimation of the parameters and that of
reliability function are investigated, and we
apply the results on the appliance data of
Nelson,W. (Applied life data analysis (1982),
chapter 5)
Keywords:.  poly-inverse  Gaussian
model, competing risk model, EM type
algorithm, confidence interval, reliability
function, nonparametric bootstrap method.
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Competing risk lifetime data arise in
medical, engineering, and many other
contexts when death or falure of an
individual or unit is classified into one of a
variety of types or causes. In the classical
competing risks framework, a subject may
only fail from one of several distinct causes.
The anaysis of competing risks data goes to
heart of modern preoccupations in survival
and lifetime analyses, touching on many of
the magjor areas of importance in the subject.
The exertion expended in fitting and
interpreting competing risks model of some
sort, apparent from a glance at the current
literature, recommends them as a worthy



object of study.

While  there many
investigations, often from the point of view
of non-parameter and semi-parameter
estimate, basing on large sample theory.
However, we may get inappropriate
conclusion with small sample size in above
models. And some other articles assume the

have been

individual or unit with mixture models, and
then do inference. Furthermore, there have
been some papers, they assume each risk has
individual  distribution like log-normal,
Weibull, exponential, Gamma, etc, to do
inference. They consider inference for the
poly-Weibull model, which arises in
competing risk scenarios when the risks have
independent Weibull distributions. However,
Takagi recommended the mean of random
samples from alog-normal distribution is not
lognormally distribution, it cannot, deal with
the changes in the distribution of
time-weighted average values when the
averaging time varies.  Furthermore,
Mudholkar and Natargjan (2002) described
the inverse Gaussian family is strikingly
analogous to Gaussian 2 family in terms of
having simple inference solutions, which use
the family chi, Gamma, and F distributions,
for avariety of basic problem. Consequently,
the inverse Gaussian distribution, which is
similar to the log-normal distribution, offers
the advantage of reproducibility. Furthermore,
the advantage of developing an inverse
Gaussian distribution based model is that it
can be used for diverse quality variables
ranging from highly skewed to amost
symmetrical. Estimation of competing risks
using the inverse Gaussian model plays a
prominent role in the analysis of competing
risks and addresses the data-anaytic

guestions of interest.

The interpretation of the inverse
Gaussian random variable as the first passage
time suggests its potentialy  useful
applications in studying lifetime or number
of event occurrences for a wide range of
fields. When early occurrences such as
product failures or repairs are dominant in a
lifetime distribution, its falure rate is
expected to be non-monotonic, first
increasing and later decreasing. In that
situation, the inverse Gaussian distribution
provides a suitable choice for a lifetime
model.

We the
poly-inverse Gaussian model, which arisesin
competing risk scenarios when the risks have
independent inverse Gaussian distributions.
This article deals with maximum likelihood
estimation of the parameters of the
poly-inverse Gaussian distribution. Due to
the complexity of the likelihood, direct
maximization is difficult. An EM type
algorithm is provided for the maximum
likelihood estimation of the poly-inverse
Gaussian distribution. They are then applied
to obtain the reliability function. Next, we
study the confidence intervals of the
parameters and the reliability function basing
on the large sample theory and the bootstrap
method. Furthermore, we aso explore the
influences after changing some competing
risks of the unit. The maximum likelihood
estimation of the parameters and that of
reliability function are investigated, and we
apply the results on the appliance data of
Nelson, (1982).
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From the inverse Gaussian model, we
get the likelihood function of the series
system. Unfortunately, we observe that the
likelihood function is difficult to maximize
directly. Consequently, we try the EM
algorithm to find the MLE. Since estimating
the variance of the MLE is an important issue
when we use EM algorithm, various authors
have devised different methods. Louis
(1982) derives a useful identity relating the
log-likelihood function of the observed data
to the log-likelihood function of the complete
data. Using this identity we obtain the
following covariance matrix of the MLE.
Therefore, when the sample size n and the
number of replications are large, the
approximation is good enough.

When the sample size is small, in our
paper, we found that the bootstrap technique
(Efron 1979a) is a good method for
understanding properties about our estimator.
Also, we consider the estimation of reliability
function.

The MLE of the reliability is given
which can be obtained by substituting the
estimates of the parameters. In order to
obtain the asymptotic variance of the
MLE of the reliability, we applied the Taylor
expansion approximation. Using the above
result, we obtain a good approximation of
confidence intervals for reliability function.

All analyses we mention above require
that the cause of each failure be identified.
However, many areas of application, such as
engineering and neurophysiology studies, the
cause of each failure may be independent
similar  distribution but not identical.
Therefore, we want to study how to estimate
the parameters of causes distributed as

inverse Gaussian with different parameters.
Conseguently, we can analyze competing risk
data sets which allows for censoring and
immune individuals.

For the generation of inverse Gaussian
distribution, Michael et al. (1976) gave a
method of generating random variables using
a transformation with multiple roots. Their
basic approach is to find a transformation of
the random variable of interest, and then use
the multinomial probabilities associated with
the multiple roots of the transformation to
choose one root for the random observation.
In the simulation study, we only observe the
minimum values of the lifetime of the causes.
The results are summarized in our tables.

From the simulation results, when the
sample sizes are relatively small, we found
that the bootstrap methods are better than the
traditional confidence interval based on large
sample theory. From our tables, when the
mode 1 is improved, we found that the
estimates for mode 1 are suitable. Further, the
estimates for other models after improving
mode 1 are amost equa to the estimates of
original experiment. From our figures, we
find the system is improved obviously after
improving mode 1.

The data (chapter 5 of "Applied life data
anaysis', Nelson (1982)) comes from the life
testing of 52 units at various stages in a
development program. For each unit, the data
consist of the number of cycles it ran to
failure or to removal from test and its failure
code (one of 18 causes). We assume all
fallure modes are log-inverse Gaussian
distribution. And from group 5, we have
shown some good results in our paper which
include the estimations of parameters,
reliability

confidence intervals and the



functions. We believe that al these results
will be useful for the competing risk models.
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