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Abstract

A portfolio problem with integer variables can facilitate the use of complex models, including models containing dis-
crete asset values, transaction costs, and logical constraints. This study proposes a distributed algorithm for solving a port-
folio program to obtain a global optimum. For a portfolio problem with n integer variables, the objective function first is
converted into an ellipse function containing n separated quadratic terms. Next, the problem is decomposed into m equal-
size separable programming problems solvable by a distributed computation system composed of m personal computers
linked via the Internet. The numerical examples illustrate that the proposed method can obtain the global optimum effec-
tively for large scale portfolio problems involving integral variables.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The mean-variance portfolio (MVP) model stems from the work of Markowitz (1952). Most MVP models
have been formulated as quadratic programming programs. As Young (1998) remarked, the prospects for
developing practical applications of portfolio analysis would be greatly enhanced if the MVP program could
involve integer variables. Allowing an MVP program containing integer variables can facilitate the use of com-
plex models, including models with discrete asset or stock values and models with transaction costs and logical
constraints such as ‘‘IF. . .Then’’ and ‘‘OR’’ conditions. Owing to the obvious merits of casting portfolio man-
agement in an integer programming framework, many authors have sought to make such a connection feasi-
ble. Notably, Sharpe (1971) and Stone (1973) employed a piecewise linear approximation to the quadratic
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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term in the mean-variance quadratic program. Bienstock (1996) developed a branch-and-cut algorithm to
solve an MVP program with integer variables. Moreover, Yamakozi and Konno (1991) derived an absolute
deviation selection approach, in which the sum of absolute deviations about the mean (a L1 measure) is used
to measure risk, to solve an MVP problem. Additionally, Young (1998) developed a minimax selection
approach, in which minimum return (a L1 measure) rather than variance serves as a measure of risk, to min-
imize the maximum loss in an MVP problem. The MVP model discussed in this study is formulated as follows:

Problem 1
Minimize f ðxÞ ¼
X
i6¼j

aijdidjxixj þ
Xn

i¼1

biðdixiÞ2;

subject to ðC1Þ
Xn

i¼1

cidixi � pihið ÞP R;

ðC2Þ
X

i

ðdixi � pihiÞ 6 q;

ðC3Þ xi 6 qhi for i ¼ 1; 2; . . . ; n;

ðC4Þ x ¼ ðx1; x2; . . . ; xnÞ; 0 6 xi 6 xi; i ¼ 1; 2; . . . ; n; xi are integers;

ð1:1Þ
where xi the number of shares allocation to security i, aij the covariance between securities i and j, di the price
per share in dollars of security i, bi the variance of security i, bi P 0, ci the expected return in percentages on
security i, ci > 0, hi the (0 � 1) variables; hi = 1 if xi > 0, and hi = 0 if xi = 0, pi the fixed charge transaction
costs paid at the beginning for purchasing a security i, q the total allocation budget in dollars, �xi the upper
bound of investing in security i, R the net return in dollars.

f ðxÞ represents the variance of the portfolio. The first constraint is the expected return constraint consid-
ering transaction costs. The second constraint is a budget constraint where all portfolio allocation to securities
is integral and the transaction costs are paid at the beginning of purchasing the securities. The third constraint
is a logical constraint for the fixed charge transaction costs and if xi > 0 then hi = 1, and if xi = 0 then hi = 0.
Problem 1 is a quadratic integer programming (QIP) problem for which the methods of Young (1998) and
Yamakozi and Konno (1991) are unable to reach a global optimum. Khachian (1979) presented an ellipsoid
method to solve a convex problem for locating a global solution. Karmarkar (1984) also proposed an interior
point method whose worst case complexity bound was better than that of the simplex and the ellipsoid meth-
ods. However, the above mentioned methods can only treat a problem with convex real-valued functions.
There are three approaches usable for solving Problem 1, as described below:

(i) Dual Lagrangean relaxation approach (Michelon and Maculan, 1991; Guignard and Kim, 1987): This
approach decomposes Problem 1 into two sub-problems which share the constraints of the original prob-
lem and yields a dual Lagrangean relaxation. The lower bound of Problem 1 is found by solving a dual
Lagrangean relaxation program, while the upper bound is reached using heuristic or enumerative meth-
ods. By decreasing iteratively the primal-dual gap using cutting plane techniques, this approach can
eventually find a global optimum. Although this approach can converge to a final result, the rate of con-
vergence is quite slow. The experiments conducted here show that for a portfolio problem with 30 assets,
a personal computer takes several hours to identify a final solution with 0.5% tolerance.

(ii) Linear terms transformation approach (Li and Chang, 1998): This approach first expresses xi by a set of
0–1 variables ui1; ui2; . . . ; uimi . A product term xixj is then replaced by a set of cross terms uikujk0 which can
be linearized conveniently. The problem with this approach is that the transformed linear 0–1 model
requires many binary variables, which may cause a heavy computational burden.

(iii) Separable terms transformation approach (Sharpe, 1971; Stone, 1973): By rewriting a cross term xixj as
follows
xixj ¼
1

2
ðxi þ xjÞ2 �

1

2
x2

i �
1

2
x2

j ; ð1:2Þ
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f ðxÞ in (1.1) then becomes

f ðxÞ ¼
Xn

i¼1

bix2
i þ

X
i6¼j

aijz2
ij; ð1:3Þ

where zij = xi + xj and bi and aij are constants with unrestricted signs.
Since (1.3) contains separated terms only, various separable programming techniques (Bazaraa et al., 1993;
Horst et al., 2000) can be applied to solve it. A major difficulty of this approach (Sharpe, 1971; Stone, 1973) is
that the transformed separable program contains too many quadratic terms. For the objective function in
(1.1), which contains n variables, the corresponding number of separated terms in (1.3) is 1

2
ðn2 þ nÞ. For

instance, if n = 3, then f ðxÞ ¼ b1x2
1 þ b2x2

2 þ b3x2
3 þ a12z2

12 þ a13z2
13 þ a23z2

23 with six quadratic terms have to
be approximated.

Solving a large scale MVP problem with integer variables is very time-consuming. During the past decade,
many distributed/parallel algorithms have been developed for different applications to increase computational
efficiency. For example, Miller and Pekny (1989) presented results obtained from solving the asymmetric trav-
eling salesman problem using a parallel branch and bound algorithm. Cannon and Hoffman (1990) proposed a
solution methodology for solving large scale 0–1 linear programming problems over a network with distrib-
uted computation. Moreover, Bienstock (1996) presented parallel computation experience with a branch-and-
cut algorithm to solve mixed-integer quadratic programming problems. Verkama et al. (1996) developed dis-
tributed algorithms for n-player game problems involving the computation of Pareto optimal solutions. Key-
ser and Davis (1998) also designed different distributed computer schemes for manufacturing scheduling
problems.

This study proposes a novel technique for solving Problem 1. Based on the eigenvector of a convex qua-
dratic function, f ðxÞ is reformulated as an ellipse function with n axes y1; y2; . . . ; yn, where �yi 6 yi < yi.
f ðxÞ can then be rewritten as the sum of n separated terms. Branching the whole search region by
0 6 yi 6 yi and �yi 6 yi < 0 for some i, Problem 1 is decomposed into some equal size separable programming
programs. These separable programs are solvable conveniently by a distributed computation system com-
posed of many personal computers linked via the Internet.

To illustrate the computational efficiency of the proposed method, this study tests several portfolio prob-
lems. The experiments show that by solving a problem involving up to 50 stocks by the proposed distributed
system composed of eight personal computers, the globally optimal solution can be determined in 12 seconds
with 0.5% tolerance.
2. Theoretical developments

Problem 1 with a strictly convex objective function is a constrained QIP program which can be rewritten
below:
Minimize f ðxÞ ¼ 1

2
xTQx;

subject to ðC1Þ; ðC2Þ; ðC3Þ; ðC4Þ;
ð2:1Þ
where Q denotes a positive definite matrix, and all other variables are defined as in Problem 1.
Since Q is positive definite, an n · n orthonormal matrix B exists, such that
Q ¼ BTdiag k1; . . . ; knð ÞB; ð2:2Þ
where ki are the eigenvalues of Q for i ¼ 1; 2; . . . ; n and 0 < k1 6 k2 6 � � � 6 kn.
Let y ¼ ðy1; y2; . . . ; ynÞ ¼ B x� x0ð Þ, where x0 denotes the unconstrained continuous optimum of f ðxÞ

and
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yi ¼
Xn

j¼1

bijðxj � x0
j Þ: ð2:3Þ
Consider the following propositions:

Proposition 1 (Referring to Sun and Li, 2001). Given x0, the unconstrained continuous optimum of f ðxÞ, for any

x 2 Rn, the difference between f ðxÞ and f ðx0Þ is computed as
f ðxÞ � f ðx0Þ ¼ 1

2

Xn

i¼1

½kiy2
i �; ð2:4Þ
where yi and ki are specified in (2.2) and (2.3).

Proof. Sincef ðxÞ � f ðx0Þ ¼ 1
2

x� x0ð ÞTQðx� x0Þ ¼ 1
2
yTdiagðk1; . . . ; knÞy, and kyk ¼ kx� x0k2, clearly

f ðxÞ � f ðx0Þ ¼ 1
2

Pn
i¼1 kiy2

i

� �
. h

Proposition 2. Expression (2.4) can be rewritten as the following ellipse equation
Xn

i¼1

y2
i

d=ki
¼ 1; ð2:5Þ
where d ¼ 2 f ðxÞ � f ðx0Þ½ � and the ellipse is centered at x0.

Proof. By referring to (2.4),
Pn

i¼1kiy2
i ¼ d, where yi ¼

Pn
j¼1bijðxj � x0

j Þ, which is converted into a standard

ellipse equation,
P

i¼1

y2
i

d=ki
¼ 1, centered at y ¼ ð0; 0; . . . ; 0ÞT� Since y ¼ Bðx� x0Þ, point y ¼ ð0; 0; . . . ; 0ÞT on

the Y axis is the same as the point x ¼ ðx0
1; x

0
2; . . . ; x0

nÞ on the X axis. Thus the proposition is proven. h

Proposition 3. Given a reference integer point xD 2 Rn, let dD ¼ 2 f ðxDÞ � f ðx0Þ½ �, the area of the search region

for optimal solution based on xD, denoted as rD, becomes
rD ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdDÞn

k1k2 . . . kn

s
: ð2:6Þ
Proof. Let dD ¼ 2½f ðxDÞ � f ðx0Þ�, the axis lengths for the ellipse in (2.5) are
ffiffiffiffiffiffiffiffiffiffiffiffi
dD=k1

q
;

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=k2

q
;
. . .

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=kn

q� �
.

Moreover, the bounds for yi are specified as
�
ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6

ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
; for i ¼ 1; 2; . . . ; n: ð2:7Þ
The area of the search region for the optimal solution of Problem 1 then becomes 2
ffiffiffiffi
dD

k1

q� �
2
ffiffiffiffi
dD

k2

q� �
. . .

2
ffiffiffiffi
dD

kn

q� �
¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffi
ðdDÞn

k1k2...kn

q
. h

Remark 1. If k1 ¼ k2 ¼ � � � ¼ kn ¼ k, then the area of the search region becomes 2nðdD=kÞ
n
2.

Suppose there exists a set of connected computers comprising one host computer and m = 2s (s is an
integer) slave computers for distributed computation. The region rD in (2.6) can be divided into 2s equal-size
sub-regions to perform a distributed search to locate an optimum. One convenient method of achieving this
division is to split the whole region into equal-size sub-regions, as described below.

Proposition 4. The area of the search region rD in (2.6) can be divided into equal-size sub-regions

SR1; SR2; . . . ; SR2s , where

(i) each sub-region has the same area 2n�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdDÞn=k1k2 . . . kn

q
,
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(ii) the upper and lower bounds for SRk are specified as uik � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6 uik

ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for k ¼ 1; 2; . . . ; 2s

and i 6 s,�
ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6

ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for i > s, where u1k; u2k; . . . ; unk 2 f0; 1g and u1k; u2k; . . . ; unkð Þ 6¼

u1l; u2l; . . . ; unlð Þ for k 6¼ l and k; l 2 1; 2; . . . ; 2sf g.

Proof. Since 0 6 yi 6

ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
or �

ffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6 0, for i ¼ 1; 2; . . . ; n and s 6 n, the area for each SRk is

2n�s
ffiffiffiffi
dD

k1

q ffiffiffiffi
dD

k2

q
. . .

ffiffiffiffi
dD

kn

q
¼ 2n�s

ffiffiffiffiffiffiffiffiffiffiffiffi
ðdDÞn

k1k2...kn

q
.

For instance, if there are 32 personal computers, then the search region for the first PC can be

0 6 yi 6

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for i ¼ 1; 2; . . . ; 5 and �

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for i ¼ 6; 7; . . . ; n. The search region for the

second PC can be �
ffiffiffiffiffiffiffiffiffiffiffiffi
dD=k1

q
6 y1 6 0, 0 6 yi 6

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for i ¼ 1; 2; . . . ; 5 and �

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
6 yi 6

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=ki

q
for

i ¼ 6; 7; . . . ; n. Fig. 1 illustrates the search region of a QIP problem with two integer variables by the proposed
method. h

According to the above propositions, finding an optimum of a mean-variance portfolio problem is equiv-
alent to solving the following separable program:

Problem 2
Minimize f ðx; yÞ ¼
Xn

i¼1

y2
i

dD=ki
;

subject to ðC1Þ; ðC2Þ; ðC3Þ; ðC4Þ; y ¼ Bðx� x0Þ;
ð2:8Þ
where all the variables are defined as described previously.

Problem 2 is a separable integer program solvable to find an optimal solution by linearizing the quadratic
terms y2

i using piecewise linearization techniques described below.

Proposition 5 [Piecewise Linearization, Li et al., 2002]. Denote Lðf ðxÞÞ as a piecewise linear function of f ðxÞ,
where aj, j ¼ 1; 2; . . . ;m represents the break points of Lðf ðxÞÞ, and sj is the slopes of line segments between aj and

ajþ1 for j ¼ 1; 2; . . . ; n. Lðf ðxÞÞ is expressed as follows:
1x2-1 

1y

X0

2x

1

2

1

3

2y

SR1

(0,0) 

SR2

SR4SR3

Fig. 1. Graphic illustration of the search region after the transformation.
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f ðxÞ ffi Lðf ðxÞÞ ¼ f ða1Þ þ s1ðx� a1Þ þ
Xm

j¼2

sj � sj�1

2
ðjx� ajj þ x� ajÞ; ð2:9Þ
where jxj denotes the absolute value of x and ffi represents approximation.

Since the quadratic terms
y2

i

dD=ki
in (2.8) are convex, the following proposition can be used to effectively

transform the problem into a linear program.

Proposition 6 (Referring to Li, 1996). Consider the program below:
Minimize z ¼
Xm

j¼1

ðjx� bjj þ x� bjÞ;

subject to x 2 F ;

ð2:10Þ
where F is a feasible set, x is unrestricted in sign, and bj are constants, 0 < b1 < b2 < � � � < bm:.

This program can be linearized as follows:
Minimize z ¼ 2
Xm

j¼1

x� bj þ
Xj

k¼1

dk

 !
;

subject to xþ
Xm

k¼1

dk P bm;

0 6 d1 6 b1;

0 6 dk 6 bk � bk�1 for k ¼ 2; 3; . . . ;m;

x 2 F ðwhere F is a feasible setÞ:

ð2:11Þ
3. Solution process with distributed computation

Suppose there exists a set of connected computers comprising one host computer and 2s slave computers. A
distributed algorithm using m + 1 computers to solve Problem 1 is described below:

Step 1: Solve an integer relaxation program of Problem 1, where x is considered a vector of continuous vari-
ables. Denote the solution as x0.

Step 2: Solve Problem 1 by the genetic algorithm. Let xD denote the best integer solution found by the
algorithm.

Step 3: Find out the upper and lower bounds of variables xi by the following programs.
Max=Min xij
1

2
xTQx 6 f ðxDÞ; ðC1Þ; ðC2Þ; ðC3Þ; ðC4Þ

	 

;

where x is treated as a vector of continuous variables.
Denote the obtained upper and lower bounds of xi as xi and xi. The integral upper and lower bounds
of xi then are bxic and dxie.
Step 4: Formulate an ellipse equation centered at x0.
Step 5: Partition the area of the search region rD ¼ 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdDÞn=k1k2 . . . kn

q
into 2s sub-regions according to

Proposition 4.
Step 6: Transform the separable QIP program with search region SRk into a linear integer program according

to Propositions 5 and 6. The host computer then assigns the transformed linear integer program with
search region SRk to a slave computer to find the optimal solution.



888 H.-L. Li, J.-F. Tsai / European Journal of Operational Research 186 (2008) 882–891
Step 7: If no integer solution better than xD is found after searching all the sub-regions, then xD is the global
optimum of Problem 1. If an integer solution x* exists, where one of the slave computers finds
f ðx�Þ < f ðxDÞ, then terminate the other processes and replace xD by x*.

Reiterate Steps 3–7.
After searching the 2s sub-regions, SR1; SR2; . . . ; SR2s , the obtained solution can be guaranteed to be the glo-

bal optimum of Problem 1.

4. Numerical examples
Example 1. This study uses the example from Markowitz (1952) to demonstrate the process of solving a
portfolio problem with integer variables. Table 1 displays the 12 year data from 1943 to 1954 for three stocks,
ATT, GMC, and USX. Meanwhile, Table 2 lists the expected returns of the three stocks.

The associated variance-covariance matrix of Table 1 is computed as shown in Table 3.
Given a total allocation budget of 100, annual returns of 15%, and no transaction costs, the portfolio opti-

mization model is formulated below:
Table
Return

Year

43
44
45
46
47
48
49
50
51
52
53
54
Min 0:0108x2
1 þ 0:0584x2

2 þ 0:0942x2
3 þ 0:0248x1x2 þ 0:0262x1x3 þ 0:1108x2x3 ð4:1Þ

subject to 1:089x1 þ 1:214x2 þ 1:235x3 P 115; ð4:2Þ
x1 þ x2 þ x3 ¼ 100; ð4:3Þ
x ¼ ðx1; x2; x3Þ; xi are integral:
This example can be solved by the proposed algorithm with four computers connected via the Internet, as
follows:

Iteration 1:

Step 1: The optimal solution of the continuous relaxation of (4.1) is ðx0
1; x

0
2; x

0
3Þ ¼ ð53; 35:64; 11:34Þ with

f ðx0Þ ¼ 224:105. The eigenvalues of Q are k1 ¼ 0:274111; k2 ¼ 0:0371779, and k3 = 0.0155112.
Step 2: Let an initially feasible solution obtained by the genetic algorithm be xD ¼ ð52; 37; 11Þ with

f ðxDÞ ¼ 228:348.
Step 3: The found upper and lower bounds of xi are:
1
s o
51:35 6 x1 6 54:65; 24:22 6 x2 6 47:08; and 1:55 6 x3 6 21:13:

Moreover, the integral upper and lower bounds of xi are:

52 6 x1 6 54; 25 6 x2 6 47; and 2 6 x3 6 21:
f three selected stocks from 1943 to 1954

ATT GMC USX

1.300 1.225 1.149
1.103 1.290 1.260
1.216 1.216 1.419
0.954 0.728 0.922
0.929 1.144 1.169
1.056 1.107 0.965
1.038 1.321 1.133
1.089 1.305 1.732
1.090 1.195 1.021
1.083 1.390 1.131
1.035 0.928 1.006
1.176 1.715 1.908



Table 2
Expected returns of the selected stocks

ATT GMC USX

Expected return 1.089 1.214 1.235

Table 3
Variance-covariance matrix

ATT GMC USX

ATT 0.0108 0.0124 0.0131
GMC 0.0124 0.0584 0.0554
USX 0.0131 0.0554 0.0942
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Step 4: The obtained B is
�0:14 �0:585 �0:799

�0:214 �0:77 0:601

0:967 �0:256 0:017

0
B@

1
CA:

y1, y2, and y3 are expressed as

y1 ¼ �0:14ðx1 � 53Þ � 0:585ðx2 � 35:64Þ � 0:799ðx3 � 11:34Þ;
y2 ¼ �0:214ðx1 � 53Þ � 0:77ðx2 � 35:64Þ þ 0:601ðx3 � 11:34Þ;
y3 ¼ 0:967ðx1 � 53Þ � 0:256ðx2 � 35:64Þ þ 0:017ðx3 � 11:34Þ:

The related ellipse equation, based on xD ¼ ð52; 37; 11Þ, is

y2
1

30:96
þ y

22

228:25
þ y

32

547:09
¼ 1:ffiffiffiffiffiffiffiffiffiffiffiffi

dD=k1

q
¼ 5:56;

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=k2

q
¼ 15:1 and

ffiffiffiffiffiffiffiffiffiffiffiffi
dD=k3

q
¼ 23:39:
Step 5: The search region is divided into four sub-regions SRk for k ¼ 1; 2; 3; 4.
The search region for each computer is listed below.
For 1st PC: 0 6 y1 6 5:56; 0 6 y2 6 15:1;�23:39 6 y3 6 23:39:

2nd PC: � 5:56 6 y1 6 0; 0 6 y2 6 15:1;�23:39 6 y3 6 23:39:

3rd PC: 0 6 y1 6 5:56;�15:1 6 y2 6 0;�23:39 6 y3 6 23:39:

4th PC: � 5:56 6 y1 6 0;�15:1 6 y2 6 0;�23:39 6 y3 6 23:39:
Step 6: Taking SR1 for instance, the program is formulated as:
Minimize
Lðy2

1Þ
30:96

þ Lðy2
2Þ

228:25
þ Lðy2

3Þ
547:09

subject to ð4:2Þ; ð4:3Þ;
y1 ¼ �0:14ðx1 � 53Þ � 0:585ðx2 � 35:64Þ � 0:799ðx3 � 11:34Þ; ð4:4Þ
y2 ¼ �0:214ðx1 � 53Þ � 0:77ðx2 � 35:64Þ þ 0:601ðx3 � 11:34Þ; ð4:5Þ
y3 ¼ 0:967ðx1 � 53Þ � 0:256ðx2 � 35:64Þ þ 0:017ðx3 � 11:34Þ; ð4:6Þ
0 6 y1 6 5:56; 0 6 y2 6 15:1; �23:39 6 y3 6 23:39;

52 6 x1 6 54; 25 6 x2 6 47; 2 6 x3 6 21;



Table 4
Empirical

Number o

10
30
50
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where Lðy2
1Þ, Lðy2

2Þ, and Lðy2
3Þ are piecewise linear functions of y2

1, y2
2, and y2

3, respectively, and x1, x2,
and x3 are integral.
Step 7: The execution time for the three sub-problems submitted in the first iteration is almost identical and
the solutions obtained for these sub-problems are listed below:

SR1: No feasible solution.

SR2: ðx1; x2; x3Þ ¼ ð52; 39; 9Þ, f ðxÞ ¼ 227:1066.

SR3: ðx1; x2; x3Þ ¼ ð53; 35; 12Þ, f ðxÞ ¼ 224:645.
Since the solution of SR3 is better than xD ¼ ð52; 37; 11Þ; xD is replaced by (53,35,12). Reiterate Steps 3–7.
Iteration 2: Only one sub-problem is left to be solved in this iteration. The search region of this sub-problem is
smaller than SR4 because a better integer solution xD ¼ ð53; 35; 12Þ is found in the first iteration.

Step 3 0: The integral upper and lower bounds of xi become:
r

f

x1 ¼ 53; 32 6 x2 6 39; and 8 6 x3 6 14:
Step 4 0: The related ellipse equation, based on xD ¼ ð53; 35; 12Þ, is
y2
1

3:94
þ y2

2

20:05
þ y2

3

69:63
¼ 1:
Step 6 0: The host computer assigns the transformed sub-problem to a slave computer and the sub-problem is
formulated as:
Minimize
Lðy2

1Þ
3:94

þ Lðy2
2Þ

20:05
þ Lðy2

3Þ
69:63

subject to ð4:2Þ; ð4:3Þ; ð4:4Þ; ð4:5Þ; ð4:6Þ;

� 1:98 6 y1 6 0; �4:48 6 y2 6 0; �8:34 6 y3 6 8:34;

x1 ¼ 53; 32 6 x2 6 39; 8 6 x3 6 14;

where all variables are defined as before.

Step 7 0: Solving the sub-problem reveals no feasible solution better than xD ¼ ð53; 35; 12Þ. The whole solution

process is completed after this step.
From the above solution process, the globally optimal solution found for this example is
x� ¼ ð53; 35; 12Þ with f ðx�Þ ¼ 224:645 and y� ¼ ð�0:153; 0:889; 0:175Þ. This is exactly the global opti-
mum of this example.

Most stock markets require invested units to be integral. However, traditional mean variance portfolio
models can only find solutions with continuous values. Such models will then round off the obtained contin-
uous values to integral values. However, the rounded integral values may not be the optimal solution for the
original program. In this example, a global solution with 0.5% tolerance identified by the Lagrangian relax-
ation techniques (Geoffrion, 1974; Fisher, 1981) is (53,35.64, 11.34) and rounding off the continuous solution
to an integral solution may obtain (53, 36,11), which is neither a global solution nor a feasible solution.
esults from different portfolio sizes (Tolerance: e = 0.5%)

stocks CPU time

Single PC (second) Distributed computation (8 PCs, (second))

2 <1
9 3

58 12
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Example 2. This example is used to test the execution time of the proposed method with distributed
computation for various sizes of Problem 1, where aij and bi are generated randomly.

The same data sets are run by the proposed model with a total allocation budget of 100, annual returns of
15% and transaction costs of 1%. Table 4 lists the computational results, which demonstrates that the
proposed method can find optimal integer solutions within 12 seconds for n 6 50 with a network of eight
personal computers. Using the proposed method with a distributed computation mechanism significantly
reduces computational time.
5. Conclusions

This study proposes a distributed algorithm for solving a portfolio problem with integer variables. By con-
verting the objective function of the portfolio problem into a related ellipse function, the original problem is
transformed into a linear mixed integer program. The search region is partitioned equally into several sub-
regions for distributed computation. By searching these sub-regions, a global optimum is guaranteed to be
reached. The numerical examples illustrate that the proposed distributed algorithm can find the global opti-
mum of a portfolio problem effectively.
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