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Abstract

We propose a multivariate parallelogram
that can play the role of the univariate
quantile in location model. We then use it to
introduce a multivariate trimmed mean. The
asymptotic efficiency of the multivariate
trimmed mean is studied by its asymptotic
variance and Monte Carlo simulation.
Keywords: Multivariate parallelogram,
Quantile, Trimmed mean.

1. Introduction

Let yl,..,yn be a random sample from a
univariate population with a distribution
function and an empirical distribution
function obtained from this sample. The
quantile interval with two quantile as ends
plays a very important role in statistical
inference. Basically this interval acts in two
aspects. First, as a region with a particular
coverage probability, the interva is a
natural estimator for the scale parameters like
range and interquartile range. With this
property, it can be used to define a process
capability index for process capability
assessment, especialy for non-normal
processes. Second, this interval is routinely
used in classifying the observations of a
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sample into good or bad observations in
robust estimation such as the trimmed mean
and Winsorized mean.

There are some attempts of proposing
analogues for quantiles or order statistics in
high dimensions. The approach of taking a
minimization problem whose solution is the
univariate  quantile, generaizing the
minimization problem to the multivariate
case and then defining multivariate quantiles
to be solutions of this minimization problem
has been taken by Breckling and Chambers
(1988) and Koltchinski (1997). Chaudhuri
(1996) considered a geometric quantile that
uses the geometry of multivariate data clouds.
Chakraborty (2001) used a transformation
retransformation technique to introduce a
multivariate quantile. But none is satisfactory
in defining multivariate regions for
constructing descriptive statistics, due to the
lacking of a natural ordering in
multidimensional data. Unlike the above
approaches, Chen and Welsh (2002)
proposed a bivariate quantile that satisfy an
analogous property to that of the univariate
quantiles in that they partition $R{ 2} $ into
sets with a specified probability content. This
method determines the sets sequentially such
that the second set is determined with the
first set that makes the distribution of the
second quantile element involves it of the
first element. When we extend this to
multiple dimensional case, the large sample
theory will be too complicated to study and
then not easy for application, based on
guantile's asymptotic distribution, such as
statistical inference. An attempt in the
literature has been done for multivariate
median estimation. For example, Oja (1983)
defined the multivariate simplex median by
minimizing the sum of volumes of simplices



with vertices on the observations, and Liu
(1988 and 1990) introduced the simplicial
depth median maximizing an empirica
simplicial depth function. An excellent
review of thiswork is given by Small (1990).

Chaudhuri  (1996) criticized that in the
literature there is little efforts in developing
multivariate descriptive dtatistics that are
relevant about some population parameters.
He further explained that most authors only
introduced certain descriptive statistics that
merely generalize the concept of univariate
statistics to multivariate setup and there are
no clear population analogues for these
descriptive statistics. Although the approach
by Chen and Welsh (2002) does serve an
estimator for estimating a multivariate
population parameter, however, aternatives
easier in theoretica study and practical
applications are worth to develop. The mgor
purpose of this paper is to define a
multivariate paralelogram region as a
counterpart of the univariate quantile interval
and propose a statistic to estimate it. Not only
proving an estimation of population
parameter, this sample multivariate
parallelogram does easy in establishing many
multivariate  descriptive — statistics,  for
example, multivariate versions of scale
estimators, process capability index and
trimmed mean. However, we will study the

multivariate trimmed mean in this paper only.

With a similar idea that Huber (1973, 1981)
used in constructing a location-scae
equivariant studentized M-estimator for
location, the multivariate quantile points are
introduced that naturally are used to construct
the multivariate parallelogram. Large-sample
properties of the multivariate quantile points
and trimmed means constructing by this
paralelogram are studied. Asymptotic
generalized variances of the multivariate
studentized trimmed mean and Cramer-Rao
lower bounds under various multivariate
contaminated normal  distributions are
computed. The study reveds that the
studentized trimmed mean is quite efficient.
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