ATELE B

FHER B g FARI T ERRRE

Mallow #! R 38 5% - &) =
Mallow Type Regression Quantile

it E %
FATEAR
FHARER

- i

O R3S BT BB 3L AR AR R R AT 4R
¢ Mallow & X, & F 4 8y & o B8 047 B o™
t—F i AR A A o

— ~ Abstract

We present asymptotic distributions of
the Mallow's type bounded-influence
regression quantile for the linear regression
model and also the simultaneous equations
model. Monte Carlo simulation comparing
means squared errors shows that the
bounded-influence one 1s more efficient than
the unbounded-influence one (Koenker and
Bassett (1978)) when gross errors occur in
the independent-variables-space.

= -~ Introduction

Consider the following linear regression
model,

where x; 1s the observation of p independent
variables including term of intercept, Ais
vector of regression parameters and ¢ s are
11d. disturbance varables with distribution
function F. The conditional cquantile of
variable y i1s x 8+ F7(a), 0<a<1 which can
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be expressed as x Bla) with
Bla)= ,6’+[ I(Q)J and where 0 s

(p-1)-vector of zeros. As an extension of the
sample quantile to the linear model, Koenker
and Bassett (1978) introduced the regression
cuantile, as an estimator of p(e), as the
solution for the following muninzation
problem

minbekﬂépa(yi_x;‘b)

where p (W)=uy (u) , w, (u)=a-Iu<0)

with I(4) the indicator function of the event 4.
This has since been widely applied to
construct robust estimators; see, for example,

Ruppert, and Carroll (1980), Jurec kova
(1984), Koenker and Portnoy (1987) and
Chen and Portnoy (1996). As obtamned from
Koenker and Bassett (1978) and Ruppert and

Carroll (1980), the regression cuantile ﬁ(a)

has asymptotic representation with the
following mfluence function,

O F @y, )

where 0 1s a positive definite matrix which
will be defined later and fand F~' represent
the p.d.f. and mverse distribution function of
the emror random variable. Note that the
function y limits the effect of the residual



and thus the influence function is bounded in
the dependent-variable-space; however, it is
not bounded n the
independent-variable-space. Therefore, one
can conjecture that in small samples the
regression quantile will be able to handle
outliers in the y space but not in the X space.
For general discussion of influence analysis,
see Cook and Wesley (1982).

In literature, considerarion has been
given to the development of estimators of
regression parameters 4 that lumt the

effects of the emor wvamable and the
independent variables. In light of the fact that
bounded-influence type regression cuantile
has not been studied, our aim is to study the
Mallows type regression cuantile for the
linear regression model and the simultaneous
equations model.

9 ~ Result and discussion

Let y,, =1, ..., n, be real numbers. For
0< o <I, the DMallow's type
bounded-inference  regression  quantile,

denoted by IéBl(a), 1s defined as the solution
for the minimization problem

n
nunbeRprl—pa(V,.—xib)-
=1

Theorem 1.

(a)
i, @-@)= £ (F @), n 5w,
xiV, (&‘— F (“))Jrop(l)

and

()

n(p, (@) -8 ) -
M.l -a)f(F @)g;' 0., 07

where lim, .n Zoxx =2 »
lim,_,.. n' Zzy":l W; X; XL' = Q w > and
lim, ..n" ZLw xx,=0,,, Where O, 0 and
Q.. are pxp positive definite matrices.

Consider the simultaneous equations
model

y:Y],Bl+le[)’2+/1.

Let the reduced from of
simultaneous equations model be

the

Y=ZI1+v

where ¥=(v,},), and z=(Z7,,Z,) and rows

of // are 1.1.d. random vectors. The fust stage
1s to estimate ], by an imtial estimator

fb for the reduced model (3.2). Define
7, =Zﬁ2 . We have

y=D,p+U

where p _(z.z), p=(5.p,), and

ve=vi-z,-1T.)8

Letw,,i1=1, ..., n be real numbers. For
0<a<l, we define the bounded-influence two
stage regression quantile as an altermative
estimator of A(e) as

IéBl(a) =arg mmbeRnoﬂ’r‘ Ewipa(yi_d;b)

where 4. is i-th row of matnx D,
The following assumptions are needed
n' 2 nn= 0 +oll) ,
' ZLw n= 0, +oll) , and



n'Ziwinni=0,, +ol) where O, O and
Q.. are all positive definite matrices.

Denote v, as (7)-th element of matnx V

wherei=1, .., nandj=1,.., p, .

Theorem 2.

e (,331 () —,B(a)) - f;] (Fl—l (a)t ;Yln—]/2

iZillw,«gz,.(a— I, < F 7 (@)-
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where we denote by zv=|:]‘]2]”' }g{mlﬁ :I
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