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This work investigates three-dimensional pattern generation problems and their applications to
three-dimensional Cellular Neural Networks (3DCNN). An ordering matrix for the set of all
local patterns is established to derive a recursive formula for the ordering matrix of a larger
finite lattice. For a given admissible set of local patterns, the transition matrix is defined and
the recursive formula of high order transition matrix is presented. Then, the spatial entropy
is obtained by computing the maximum eigenvalues of a sequence of transition matrices. The
connecting operators are used to verify the positivity of the spatial entropy, which is important
in determining the complexity of the set of admissible global patterns. The results are useful in
studying a set of global stationary solutions in various Lattice Dynamical Systems and Cellular
Neural Networks.
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1. Introduction Ermentrout, 1992; Ermentrout & Kopell, 1994;

Lattice Dynamical Systems arise naturally in a Ermentrout et al., 1991; Keener, 1987, 1991] and

wide range of applications of scientific models, [Kimball et al., 1993], chemical reaction [Bates &
in such fields as phase transitions [Baxter, 1971, Chmaj, 1999; Bates et al., 2001] and [Eveneux &
Cahn, 1960; Lieb, 1967a, 1967b, 1967c, 1967d, 1970;  Laplante, 1992}, image processing and pattern recog-
Onsager, 1944] and [Yang & Yang, 1966a, 1966b,  nition [Chua, 1998; Chua et al., 1995; Chua & Roska,
1966¢], biology [Bell, 1981; Bell & Cosner, 1984; 1993; Chua & Yang, 1988a, 1988b; Firth, 1988] and
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[Itoh & Chua, 2003, 2005]. In recent years, much
attention has been paid to the complexity of the set
of all global patterns, with particular reference to
spatial entropy [Ban et al., 2001a; Ban et al., 2002;
Ban et al., 2001b; Ban & Lin, 2005; Ban et al., 2007,
2008a, 2008b; Chow & Mallet-Paret, 1995; Chow
et al., 1996a, 1996b; Hsu et al., 2000; Juang & Lin,
2000; Juang et al., 2000; Lin & Yang, 2000, 2002;
Lind & Marcus, 1995] and [Markley & Paul, 1979,
1981].

In the one-dimensional case, spatial entropy h
can be determined exactly using an associated tran-
sition matrix T, i.e. h = log A(T), where A(T) is the
maximum eigenvalue of T.

For a two-dimensional situation, Ban and Lin
[2005] developed a systematical approach for deter-
mining the high order transition matrix T,. They
determined the spatial entropy h by computing
the maximum eigenvalues of a sequence of such
transition matrices. For a class of admissible local
patterns, meaning for a class of Ty, the limiting
equation of p* = exp(h(T2)) can be exactly solved
using the recursive formula for p(T,,). However, T,
is a 2" x 2" matrix, and p(T,,) is usually quite dif-
ficult to compute for large n. The connecting oper-
ator and the trace operator have been derived to
overcome these difficulties [Ban et al., 2007]; lower-
bound estimates of entropy have been obtained by
introducing connecting operators C,,, and upper-
bound estimates of entropy have been made by
introducing trace operators 7,,.

This work develops a general method to inves-
tigate three-dimensional pattern generation prob-
lems, extending other studies [Ban & Lin, 2005] and
[Ban et al., 2007] to the three-dimensional case. It
focuses on ordering matrices of patterns and on the
connecting operator in the three-dimensional case.

The trace operator has been described elsewhereI
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and the other cases are similar.

where

[Ban et al., 2008b]. This work is motivated by
3DCNN, so it is a major tool to study global pat-
terns in 3DCNN.

Three-dimensional pattern generation prob-
lems are considered initially. Let S be a finite set
of p > 2 colors, where Z? denotes the integer lat-
tice of R3. Denote, U : Z2> — S, a global pattern by
U(ai, a2, ®3) = Ua,asas- The set of all patterns with
p colors in a three-dimensional lattice is expressed
as X3 = SZ° = {U|U : Z3 — S}. The set of all local
patterns on Zyy,, xms,xms 1 denoted by

Em1Xm2><m3 = {U’Zlem2Xm3‘U S 213)}

where Ly, XmaXmg — {(041, a2, 043)| 1 < o <
m;, 1 <i < 3}isan my xXmgxmg finite rectangular
lattice. For simplicity, two colors on the 2 x 2 x 2
lattice Zoyoxo are considered here. Given a basic set
B C Yoyx9x9, the spatial entropy can be defined as

)= tm o8Tmoxmeon(B) g

mi,mz,ms3—o0 mimsaoms

where 'y, xmy xms (B) is the number of distinct pat-
terns in Xy, xmoxms (B) and i, xmg xms (B) is the
set of all local patterns on Z,,, xmqxms, Which can
be generated from B, as described elsewhere [Chow
et al., 1996b]. Six different orderings

]+ [1] > [2] - [3]
[yl = 21 - [1] > [3]
[2] - 3] = [1] >~ [2]
(2] [1] = 3] = [2]
[9) : 2] - [3] - 1]
2] 3] - [2] = 1]

are obtained and the ordering matrix Wyyoyo for
Yoxaxo can be introduced according to the differ-
ent ordering [w]. Without loss of generality, Xoyxoxo
is considered

#-

QRIR@
ENEENEY

One of the main results is the construction of ngm2xm3 from Xgyoy92, where ngm2xm3 represents the
ordering matrix of 9y, xms according to [Z]-ordering. It can be addressed in the following three steps.
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Step I. Apply [z]-ordering to Zixm,x2

214 | ...]2k| .. |2m2|2m,
1 3 ces 2k' 1 000 2m2»3 211’12-1
_
y

and introduce ordering matrix Xoym,x2 for
Yoxmax2 as in Theorem 2.1. By Theorem 3.2, the
transition matrix Az.2xm,x2 can be obtained from

AZ‘;QX’VTLQXQ = (Ax;QX(mgfl)XQ)QQ(MQ—l)><22(m2—1)
o (EQQ(mQ—Q) & Ax;?x?x?)v

where Fox is the 2F x 2F matrix with 1 as its
entries, ® is the tensor product and o is the
Hadamard product, as in Eq. (36).

Step II. Convert [z]-ordering into [Z]-ordering on
Z1 «myx2 USINg

my+l|myt2| .. |mptk| ... [2mp

and introduce the ordering matrix Xy, x2 for
Yoxmyx2 as in Theorem 2.4. The associated tran-
sition matrix Az.oxm,x2 is given by
L
Aa?:;2><mQ X2 — IP)gc;2><mQ><2A:z:;2><mg><2IP>35;2><mg><2,

where Pp.oxm,x2 is the permutation matrix as in
Theorem 3.4.

Step III. Define [Z]-ordering on Zjxmgxms a8

A

(my-Dmy+1 | (ms-Dmo+2 mzmy-1| m3my

m2+1 m2+2 21’1’12—1 2m2

h(A,. > lim
( a:,2><2><2) = 00 mlmgP

and introduce ordering matrix Xoxmyxms for
Yoxmoxms as in Theorem 2.5. The recursive for-
mula for the transition matrix Az.2xm,xm, can be
obtained by

(Ai;2><m2 x (m3—1) )2m2(m3*1) x2m2(m3z—1)

© (EQmQ(m3—2) 02 A§c;2><m2><2)

Ai;?Xmg Xms —

as in Theorem 3.5.

Theorem 3.7 enables the maximum eigenvalue
A#:2,ma,ms Of Agosmyxm, to be computed, to yield
the spatial entropy,

IOg )\i;Q,mg,mg

h(B) = lim
moms

mg,ms— o0

However, some estimates of lower bound of spa-

tial entropy h(B) can be made using the connecting

operator. Then, for fixed mq, mo > 2, the mg-limit
in Eq. (1) is studied:

1
lim — log|AYY |. (3)

ms—o0 M3 T;2XmaXms

The recursive formula of AT in mg is con-
. . ; 2 X3 . .
sidered. Accordingly, the next task is to investigate

Eq. (3). According to Egs. (53) and (54),

mi o R
A:f?;2><mz Xmaz [Ax;ml,WQ,mg;a]QMQ X272,
gma(my—1)
— } : (k)
Agimymz maza = Ai;m17m2,m3;a
k=1

where A(Ak)

&;mi,ma,ma;a
tern of order (mq,mg, m3) and is a fundamental ele-

ment in constructing Az.m, momasa- Yame,me,ms 19

defined as

is called an elementary pat-

[Vfc;rm ,mM2,m3 ;a] ’

(k) )t

Vz;ml,mg,mg;a - ( Tymi,ma,ma;x

Vi;ml,mmms =

as in Egs. (55) and (56), which specifies system-
atically these elementary patterns. The connecting
operator Cg.po.mym, is introduced as in Defini-
tion 4.2, and used to derive a recursive formula

for A(Ak) and A(Aé) as in

Zym1,ma,(m3—+1);a1;a2 Zym1,mo,m3;an

Theorem 4.5

Vi;m1,m27m3+1;a1;a2

= Si“;?ﬂa;mlmz;amz Vi;ml,mz,mmaza

_ g :
where Cz.pnaimim, = Sj;ms;mlmQ. The recursive for-

mula Eq. (67) yields a lower bound on entropy

log p(Si§m3;m1m2;a1012 Si“;m3;m1M2;012013 U Si“;ms;mlmmapoq) (4)
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such as in Theorem 4.12 and which implies
h(Agz.2x2x2) > 0 if a diagonal periodic cycle is
applied with a limit in Eq. (4) that exceeds 0. This
method powerfully yields the positivity of spatial
entropy, which is useful in evaluating the complex-
ity of patterns generation problems.

The method is very effective in elucidating the
complexity of the set of mosaic patterns in SDCNN.
A typical 3DCNN is of the form

dum’k

Tt Wik T W
+ D oS WitraiiBiin)
leel, |8, 1v1<1
+ Y baptitajisrin ()
lal,|Bl,1v]<1

where (i,7,k) € Z3, f(u) is a piecewise-linear out-
put function, defined by

v = Fw) = gt 1]~ fu— 1))

Here, A = (aq,3,y) is a feedback template, a spatial-
invariant template; B = (ba,g,) is a controlling
template, and w is called a biased term or thresh-
old. To elucidate the method, consider nonzero
ap,0,0 = @, a1,0,0 = Az, A0,1,0 = Ay, Ag,0,1 = az and
zero other a, g~ and by g~. Therefore, Eq. (5) can

be rewritten as
duimk N
— = gkt wtaf(uie) + acf (i)
+ay f(uijr1k) + azf(Uijrr1)- (6)

The quantities u; ; represent the state of cell at
(,4,k). The stationary solution @ = (@) of
Eq. (6) satisfies

Ujjk = W+ AV jk + AgVip1 gk T Ay 541k
+ a2V k+1, (7)

where v = f(u), which is very important in study-
ing 3DCNNs: their outputs v = (0; ;1) = f(ti k)
are called patterns. A mosaic solution @ satisfies
|t; j] > 1 and its corresponding pattern v is
called a mosaic pattern here |u; ;| > 1 for all
(i,4,k) € Z3. Among the stationary solutions, the
mosaic solutions are stable and are crucial to study
the complexity of Eq. (6). Equation (7) has five
parameters w, a, a,, ay and a,. a; < ay < a; <0
and |ay| > |ay| + |a.| are considered to elucidate
application of our work. In particular, region [4, §]
in Fig. 4 in Sec. 5 is considered: the transition

matrix can be written as
Agoxox2=GQEQREQE,
where G = [1 1] and F = B 1].

1 0 1
Then, Steps I-1II yield the aforementioned
admissible patterns in gy, xms; the correspond-
ing transition matrix can be derived as in

Proposition 3.9.

Step I= Ax;?XmQXQ = ®(G & E)m271 & (®E2),
Step II = Ai‘;QXmQXQ = (®Gm271) R (®Em2+1)’
Step I = A:)3;2><177,2><mg = ®((®Gm271) ®E)m371 X
(RE™2).

The complexity of the 3DCNN model, as in

Eq. (6), can be examined using the connecting oper-
ator defined in Sec. 4. Since the connecting operator

mo—1
Cz;mumg?;ll = Sz;mumg?;ll = (®G 2 ) X E,
the maximum eigenvalue can be exactly com-

puted as

P(Szimisma2:11) = 29m2717
where g = (14 1/5)/2 is the golden-mean, as in
Proposition 5.1. According to Eq. (4), the lower
bound of spatial entropy in the region (VIII)-(i)-
(1)-[4,8] can be estimated

. 1
h(Agoxax2) > lim ——log p(Szimime2:11)

ma—0o0 2My

11
= —10gg.
2

Moreover, in this case, spatial entropy can be
solved exactly from the maximum eigenvalue of
Aj.25xmy xmsy - Since

P(Ag25xmy xmg) = 2m2Tma=1gma=1)(ma=1)

the spatial entropy is

P(Aﬂl’;?w@ Xms)

h(Aa};QXQxQ) = lim
mams3

mg,ms— o0

=logyg

as in Proposition 3.9.

The rest of this paper is organized as fol-
lows. Section 2 derives a recursive formula for
the ordering matrix Xoxm,x2 for oym,x2 from
Xoxax2. The ordering [z] is converted to [Z]. Then,
a similar recursive formula is constructed for order-
ing matrix ngmzxmg from ngm2xg. Section 3
derives the recursive formula for the associated
high order transition matrices Az.oxm,xm, from
Agz.ox2x2. Section 4 derives the connecting opera-
tor Ci.masimyme, Which can recursively reduce ele-
mentary patterns of high order to patterns of low
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order. Then, the lower-bound of spatial entropy
is determined by computing the maximum eigen-
values of the diagonal periodic cycles of sequence
Stimaimimae:ag- Section 5 gives an example of the
application of our main results to 3DCNN.

2. Three-Dimensional Pattern
Generation Problems

This section describes three-dimensional pattern
generation problems. Here, mqy, mo, mg > 2 are
fixed and indices are omitted for brevity. Let S be
a set of p colors, and Z,,, xm,xms be a fixed finite
rectangular sublattice of Z3, where Z3 denotes the
integer lattice on R? and (my, ma, m3) a three-tuple
of positive integers. Functions U : Z3 — S and
Unixmaxms © Lmyxmaxms — O are called global
patterns and local patterns on Zy,, xmgxms respec-
tively. The set of all patterns U is denoted by
Eg = SZ3, such that Zg is the set of all patterns
with p different colors in a three-dimensional lattice.
For clarity, two symbols, S = {0, 1} are considered.
Let x, y and z coordinate represent the 1st-, 2nd-
and 3rd-coordinates respectively as in Fig. 1.

Six orderings [w] ordering are represented as

Eq. (8)

] (1] - 2] - 13
Wl 2> 1] - 3]
2] 8] - 1] = 2]
][0 = 3] - [2 ®)
] 2] > 3~ 1]
2] 8] - 2= 1]

\
«

X

Fig. 1. Three-dimensional coordinate system.

Use Uaq asas t0 substitute wa,,as,a5 for simplicity afterward.

On a fixed finite lattice Z,, xmgxms, an ordering
[w] : [i]] = [j] = [k] is obtained on Zu,, xmsyxms
which is any one of the above orderings on

Zm1 Xmao Xms3
Yo (a1, az, a3) = mymy (o — 1) + my (o — 1) + ay,

where 1 < ay < my and 1 < ¢ < 3. The ordering [w]
on Zp,, xmgxms can Now be applied to Xy, ximg xms -
Indeed, for each U = (Unjanas’) € Ly xmaxmss
define

Yo (U) = Yumy,ma,ms(U)

mi My

my,
_ Qa0
=1+ E E E Uay agazWmi,mg,my s

a;=1a;=1a,=1

where

3,00,

— gmimjmp—tu(a1,az2,a3)
mi,mg,my =

— gmum (mi—ai)+my (mj —oy)+(me—ag)

U is referred to herein as the 1,(U)-th element in
Yy xmgxms by ordering [w]. Identifying the picto-
rial patterns using 1, (U) is very effective in proving
theorems since computations can now be performed
on 9, (U). For instance, the orderings on Zgy 22 can
be represented as in Fig. 2.

2.1.

The cube Z,,, xmyxms can be decomposed by
mi-many (me-many and mg-many) parallel two-
dimensional rectangles in Zjxmyxms (Zimyx1xms
and Zy, xmyx1). Any patterns U = (Ua ag0s) €
Y xmaxms can be decomposed accordingly. For
example, in [z]-ordering, define the ajth layer of
rectangle as

Ordering matrices

Zal;mgxmg — {(061,042,043”1 S (&%) S ma,
1 S Qs S m3}.

Pattern U in a;th layer is assigned the number

mo  ms3
S 1,a2,a3
loy =1+ Uayazaz 1 my,ms> 9)
i ,13

as=1az=1
1az,a3

where x; mams = gmams—ms(az—1)~as -~ Ag denoted
by the 1 X mg X mg pattern

Uy 1ms |Ua;2ms Uy maoms
T1xmoXmsjia, —
e
Uay12 | U222 Uaymo?2
Uqqi11 | Uy 21 Uaimol
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214
] T Y :
D— Y, — y
6|38 718
517 6
(1):[x]-ordering (4):[z]-ordering
G99 99
N
(2):[y]-ordering (5):[g]-ordering
“1"417 ‘%7
1 /2 / (173 /7
[ 374 [ 2/ 4/
Ty TP
(3):[z]-ordering (6):[2]-ordering

Fig. 2. The orderings of Zaoyx2x2.

In particular, when mg = 2 and m3 = 2, as denoted ~ sum of two 1 x 2 x 2 patterns using [z]-ordering:

by T1x2X 2500 where L =,
L2x2%2:i130 = Liyio

; 2 = . .
log =1+ 23ua111 + 2%Uq, 12 = x4 D Xy
+ 2ua1 21 + Uy 22 (10) Uiz (U122
Upn|Ui21

and
=

Ue12 Uy 22

U212 U222

)
U111 Uy 21 U1 | U2g

TIx2x2ia; = Lia, —

where a1 € {1,2}. A 2 x 2 x 2 pattern U =  Wwhereiq, asin Eq. (10) and a; € {1, 2}. Therefore,
the complete set of 2% patterns in Yoyoxo is given by

(Uay azas) can now be obtained from the [z]-direct
| a 16 x 16 matrix Xoxoxo = [Z4,4,2] as its entries in

EE0E, OO SME OEEE, OPBE,

9-06-03-0-9
70003009
50605069
1-0/9-03-00-9

-

seae

B il i b
R

ENA0NE0LN @0d0 GdE@d

=y

!
RLDRDER
= R IR IR

where

2Use x;,4, to substitute z;, ;, for simplicity afterward.
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That

Y (Tiyiy) = 24 (i1 — 1) + 12
is easily verified, and local patterns in Ygyox9o are
then counted by going through each row succes-
sively in Eq. (11). Correspondingly, Xox2x2 can be

referred to as an ordering matrix for Yoxoxa. A 2 X
2 x 2 pattern can also be regarded as an [z]-direct
|

BB60 P56 OB SS8H

-0 2-03-0 -0

3-0 2-03-0 %0
-0 @-0 &0 EN

0L 1790060 ADES
-0 @-0 &0 @

e

Now,

963

sum of two 1 X 2 x 2 patterns using [Z]-ordering,

x2><2><2;%1%2 = xgl’AiQ = xfil ® x’AiQ

where

'zal =1+ 23“04111 + 22ua121 + 2ua112 + U, 22,
oy € {1,2}.

The ordering matrix Xoxoxo can be represented as

= = JE R
CICILIL
A2 %
CILALL

where

$a(dy ;) =24 (0 — 1) + i
can be verified. Similarly, a 2 x 2 x 2 pattern can also be viewed as a [y|-direct ([g]-direct) and [z]-direct

([2]-direct) sum of 2 x 1 x 2 and 2 x 2 x 1 patterns:
Yjrgz = Yir D Yjos fgj‘le = fgjl & 3)}27
where

jOéQ =1+ 23“10421 + 22u1a22 + 2“20@1 + U2092
jOéQ =1+ 23“10421 + 22u2a21 + 2“10@2 + U2092
kos = 1+ 23U110s + 2%U1205 + 2Us10s + U220s,

ffas =1+ 2%U110y + 2%U21ay + 2U1205 + U220s,

Zkiky = Zky D 2y, ’éklfqg = 212:1 ® 21%2’
Q9 € {1,2},
Q9 € {1,2},
a3 € {1,2},
as € {1,2}.

(12)

A 16 x 16 matrix Yoxox2 = [¥j,jo) OF Zaxax2 = |2k, k,) can also be obtained for ¥oy2x2, such that Yoyoxo =

G896 9090

=)

G859 9699 _

e

r’s

=

=

B &) &
o)

DT W@

4

WD
X

or Zox2ax2

M==d=J = 4 OTEH DDOD

(o

a

d
LN

A

LN
&
LN

5
B 5 a

(&
e
a

0930 00@d WAWd BAeG

LN
L N
8,

[ B

s BRI
LTS
06 d e

a0 a4

where

.-

Uaad
I
Bl
@aaa

where
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The relationship betweenA WQXAQXQ must be
studied, where W € {X|Y,Z,X,Y,Z}. Before the
relations are explained, the column matrix and the

row matrix must be given. Let A = [a;;] be a
m? x m? matrix, the column matrix A© of A is
defined as
B A(lc) Agc) . A;CL)'
(c) (c) (c)
A(C) . Am+1 Am+2 e A2m
(c) (c) (c)
_A(m—l)m+1 A(m—l)m+2 e Am2_
i A1q a2q T Ao
Aglc) _ A(m+1)a A(m+2)a o 02m)a
LE((m—1)m+1)a  Y(m—1)m+2)a " Am2q

where 1 < a < m?.
The row matrix A of A is defined as

[ AP A AD
(r) (r) )
A('r‘) o Am+1 Am+2 e A2m
(r) (r) )
Ayt Aiimsz A
(13
[ Aol An2 cr Qam
A0 — | felmtD) o (m+2) © o (2m)
[ Qa((m—1)m+1) Qa((m—1)m+2) **° Qam?
(14)

where 1 < a < m?. Hence, based on some obser-
vations, Xoyoxo can be represented in terms of
Yjrjo S

Xoxoxa = Ygr>22><2' (15)

Furthermore, Yoyoxo = Xgrx)gxg, Zowoxo = X(er)2x2v
Xoxoxz = ng)gxg, Yoxax2 = ng)gxg and Zoxoxo =
Ygx) 9xo can also be obtained. The remainder
of this subsection addresses the construction of
Xo xmaxms from Xoxoxo in the following three steps,
where Xg xmaxms represents the ordering matrix of
Y oxmyxmg according to [Z]-ordering generated from
Yoxax2-

Step I. Apply [z]-ordering to Zjxm,x2 using

2 14 | ... ]2k | .. |2m2|2m,
1 | 3 | ... [2k-1| ... |2mp3|2my1 (16)
y

and introduce ordering matrix Xyy,,,x2 for
E2 XMmao X2+

Step II. Convert [z]-ordering into [Z]-ordering on
Z15myx2 by

mytl mp+2| .. [mptk| ... |2m,
z (17)

and introduce ordering matrix Xyy,,,x2 for
Z:2 XMmo X2+

Step III. Define [Z]-ordering on Zqxm,xms DY

A

(m3-1)my+1 | (m3-1)my+2

mzmy-1| msm,

m2+1 m2+2 21’112- 1 21’1’12
1 2 my- 1 m,
(18)

and introduce ordering matrix Xoxmyxms for

22 Xmao Xms -+
To introduce Xaym,x2, define

Y2xmax2ig12...my = Y2x2x255152 DY2x 2% 235253
D DY2%2%2my—15mo

=Y DYjo D D Yy » (19)

where 1 < jp < 24 and 1 < k < my. Herein, a

wedge direct sum @ is applied to 2 x 2 x 2 patterns
whenever they can be attached to each other.
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Now, Xoxm,x2 can be obtained as follows.

Theorem 2.1. For any ma > 2, Yoxmox2 =
{Wirjorrjmy 1> where Yjyjs..j,,, 8 given in Eq. (19).
Furthermore, the ordering matric Xoxmex2 =
[Yjsga..jmy] Which is a 222 x 22™> matriz can be
decomposed into following matrices

X?XWQXQ = [X2><m2><2;j1]22><227
where 1 < j; < 2%, For fized j1,72,...
{1,2,...,24},

7jk €

Xosmax2jijajr = [Xoxmax2ijijo-jrinsr|22x22,
where 1 < jry1 < 2% and k € {1,2,...,mo—2}. For
fized ji, ja, ...

y Jma—15

X2><m2><2;j1j2"~jm271 = [Y2xms ><2;j1j2"'jm271jm2]22 x22;
|

Where Yaxmyx2:j1jo--jm, 15 defined as in Eq. (19).

Proof. From Eq. (12), %a;asas can be solved in terms
of ja,, yielding

o

Ulay1 = 30‘22—3] , (20)
-jag -1- 23“10121

Ulan2 = 22 ’ (21)
[ oy — 1 —23 — 22

U201 = Joz u;ml umﬂ} ) (22)

U002 = Jog — 1 — 22U1an1 — 2%U10p2 — 2Unay1, (23)

where [ ] is the Gauss symbol. Equations (20)—(23),
yield the following table.

Jao ‘ 1 2 3 4 5 6 v 8 9 10 11 12 13 14 15 16
Ulapn |0 O O O O O OO 1 1 1 1 1 1 1 1
U2 |0 O 0 0 1 1 1 1.0 0 0 0o 1 1 1 1
U1 |0 O 110 0 1 1.0 0 1 1 0 0 1 1
a2 {0 10 1 0 1 0O 1.0 1 0 1 0 1 0 1

For any ms > 2, we have

m2
imQ;l =1+ Z (22(m2—a2)+1ula21

as=1

4 22(me=az)y o),

m2
im2;2 =1+ Z (22(m27a2)+1u2a21

as=1

4 2Hmz—az)y, o).

From the above formulae,
imy+131 = 22 (i1 — 1) + 2U1 (my41)1
+ Ui (mar1)2 + 1,
bmat1:2 = 22 (Imyi2 — 1) + 2Ug(my41)1
+ U (1my+1)2 + 1.
Now, by induction on ms the theorem follows from

the last two formulae and the above table. The proof
is complete. M

Remark 2.2. By the same method, the following
relations can be derived. The details of the proof
are omitted here for brevity.

X2><2><m3 = [22><2><m3;k1k2...km3,1km3]22m3 x22m3
Yoy x2%2 = [Ty x2%2inin.. iy —1imy 122m1 x22m1
Y2><2><m3 = [22><2><m3;l;:1i€2...];‘m371/;:m3]22m3><22m3

Zm1><2><2 = [xml X?X?;%l%Q...%mlflgml]22m1 x22m1
Laxmyx2 = [y2><m2 X2;3132---3m2713m2]22m2><22m2

Next, [x]-ordering is converted into [Z]-ordering
for Zle2><2. Since Zle2><2 == {(1,0&2,0&3) o1 <
ag < mg,1 < az < 2}, the position (ag,as) is the
ath in Eq. (16), where

a=2(as — 1)+ as. (24)

In Eq. (17), the position of (1, ag,as) is the ath,
where

&= mz(ag — 1) + .

The relation

& =moa+ (1 —2my) [a_l]ﬂ—(l—mg),
or
a=k ifa=2k-1,
and
a=mg+k if a =2k,

1 < k < mg is easily verified.

Now, the ordering [Z] in Eq. (17) on Zjxmyx2
can be extended to Zixm,xms by Eq. (18). For
a fixed ma, [Z]-ordering on Zjxm,xms is clearly
one-dimensional; it grows in the z-direction. Given
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ordering Eq. (18) on Zixmyxms, for U =
(ualagag) € 22><m,2><m,3, denoted by

mo  ms3
log =1+ Z Z ualazag2m2(m3ia3)+(m27a2)7

az=1az=1
where a = 1, 2,

¢j(U) = 2mams (’ALl — 1) + '22.
Now, let &;: = U = (Uajasas), yielding the
new ordering matrix ngmzxg = [i2><mg><2;21%2] for
Yoxmax2. The relationship between Xoym,x2 and
ngmQXQ is established before ngm&xm:s is con-
structed from ngmQXQ for mg > 3.

A conversion sequence of orderings can be
obtained from Eqs. (16) and (17), where Py rep-
resents the permutation of Ny, = {1,2,...,2ma}
such that Py(k + 1) = k, Py(k) = k + 1 and the
other numbers are fixed. Py is also the permutation
on 7 xm,x2 such that it exchanges k and k41 while
keeping the other positions fixed, i.e.
kE4+1) || || B || |k .

: 1 T TR+

(i) When 2 < k < [mg/2],

Clearly, Eq. (16) can be converted into Eq. (17)
in many ways using the sequence of P;. A system-
atic approach is proposed here.

Lemma 2.3. For my > 2, Eq. (16) can be con-
verted into Eq. (17) using the following sequences
of (ma(mg — 1))/2 permutations successively

(PoyPy - Poppy—2)(P3Ps -+ Poppy—3) -+

(25)
(PkPk+2 T P2m2—k) o (Pm2*1Pm2+1)Pm27

Proof. When mgy = 2 and 3, verifying that Eq. (25)
can convert Eq. (16) into Eq. (17) is relatively
simple.

When msy > 4, and for any 2 < k < meg,
applying

(PyPy -+ Poppy—2)(P3Ps - Poppy—3) -+
(PyPry2 - Pomy—k)

to Eq. (16), yields two intermediate cases:

k41 3k—1

k+3 3k —1+20 2ms—k— 1 2my — k41 2mg — 1 2mo
)
1 2 k k+2 k+4 k+20 2my — 3k +1 2my—k=2| 2my — k
(26)
where 0 < ¢ < msg — 2k.
(ii) When [mo/2] +1 <k <mgy —1,
E+1 2my — k= 12ma — k+ by, — 42 2me — 1| 2ms,
(27)
1 2 k-1 k k+2 2mg — K

When k& = mg in Eq. (27), Eq. (17) holds. Equa-
tions (26) and (27) are established by mathematical
induction on k. When k = 2, verifying that Eq. (16)
is converted into

2mg — 32ma — 1| 2m,

2ma — 4|2my — 2

by PoPy--- Pop,—2 is relatively easy such that
Eq. (26) holds for k = 2. Next, assume that
Eq. (26) holds for k£ < [m/2]. Then, by applying
Piy1Pii3- - Pom,—k—1 to Eq. (26), Eq. (26) can be
verified to hold for k£ + 1 when k + 1 < [mg/2]
or becomes Eq. (27) when k + 1 > [mg/2]. When
k > [ma/2] + 1, Pey1Prys- - Poamy k-1 is applied
to Eq. (27). Equation (27) can also be confirmed to
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hold for k+ 1. Finally, Eq. (17) is concluded to hold
for k = msy. The proof is thus complete. W

Based on Lemma 2.3, Xgoym,x2 can be con-
verted into Xoym,x2 as follows. Let

1 0 0 0
0 010
P = , (28)
01 00
0 0 01

and for 2 < j < 2mso — 2, as denoted by
P2m2;j = 12j71 QRP® 122m27j71,
where I}, is the k x k identity matrix. Moreover, let

]Px;2><mg><2
= (Pomy:2Pomogia -+ Pomg:2ma—2)
T (Png;k o P2m2;2m27k) T (P2m2;m2)’
(29)
2 < k < my. Then, the following theorem holds.
Theorem 2.4. For any mo > 2,

2 t
X2><mg><2 = Pq:;2><m2><2X2><m2X2Px;2><m2><2- (30)

Proof. From Eq. (24), in Zixm,x2 the position
(g, ar3) is the ath in Eq. (16), where o = 2(ag —
1) 4+ ag. Define

ea =1+ 2“1042@3 + U2ap003 5

1</, <4and 1< a<2my. For U= (Ug azas) €
Yoxmax2, from Theorem 2.1 it can be denoted by
Y2xma X251 2. jmy and by Eq. (12) for fixed 1 <
as < ma:

.j(XQ =1+ 23u1a21 + 22“10@2 + 2u2a21 + U200925

where 1 < j,, < 16. Accordingly, y;,, can be rep-
resented by ye,,, ¢, and the relation is

Yi o Y2 Ys Y4 Yir Y12 Y21 Y22
Ys  Ye Yt Ys | _ |Y13 Y4 Y23 Y24
Yo Yo Y11 Y12 B Y31 Y32 Ya1 Y42
Y13 Y14 Y15 Yie Y33 Y34 Y43 Y44

Therefore, from Eq. (19) patterns in ordering

matrix Xoyxm,x2 can be specified by

Y2xma x 2152 dmy = Yi1 D Yjo D+ O Yjpn,
= Y10y D Ytzt, D O Ylomy —102m,
= Ylilylomy -

For any 1 < k < 2mg — 1,
t
PQmQ;kXQXmQXQ‘PQmQ;k
t
= PayytelUe 050,04 1030y P2
= [3/4142"'4k+14k"'é2m2]
is easily verified, such that P,,,,.; exchanges ¢}, and

li41 in Xoxm,x2. Therefore, Eq. (30) follows from
Eq. (29) and Lemma 2.3. W

Now, according to Theorem 2.4,
szm2><2 = [‘r2><m2><2;2122]7

1 < %1,%2 < 2mo. From some observations
as Eq. (15), ngmQXQ can be represented as
22xmax2:ki1ka > where 1 < k‘l,kg < 22m2‘ The [SAU]—
expression

X2><m2><2 — Z(T)

2Xmao X2

(31)

for ¥oym,x2 enables ngmﬂm?, to be constructed
for X9y mgxms- Indeed, for fixed my > 2 and mg >
2, let

x2><m2 Xmg;ilzg = Z2><m2><m3;k1k2~~~km3

= Z2><m2 ><2;k1k‘2 éBZQXmQ ><2;k‘2k3
D @22><m2 X2ikmg—1kmg (32)
Therefore, by a similar argument as was used to
establish Theorem 2.1 the following theorem holds

for ngmﬂm?ﬂ the detailed proofs are omitted for
brevity.

Theorem 2.5. For fized my > 2 and for any
mg > 2, the ordering matric Xaxmgxms With respect
to [Z]-ordering can be expressed as
Xi;2><m2><m3 - [X2><m2><m3;k1]2m2 X2M2

where 1 < ki < 22™2. For firted 1 < ky,ka,...,
kl S 22m27

X2><m2><m3;k1k2---kl - [X2><mzXmg;klkg---klkl+1]2m2 X 22
where 1 < kjpp < 22m2 gnd 1 < | < ms — 2. For

ﬁxed kl, k‘g, ceey km3_1,

X2><m2><m3;k1k2---km3_1 - [22><m2><m3;k1k2---km3]7
WheTe 22xmy xmsy;kik--kmg 15 given by Eq. (32).

Remark 2.6. Similarly, according to other orderings,
the following relations can be derived

X?XWQ Xms — [y2><m2><m3;j1j2~~~jm2]2m2m3 X 21m2m3

Ym1><2><m3 = [ZWU ><2><m3;i€1i€2---i€m3]2m1m3 x2mims3

Yy x2xms = [Tmy x2xmasizig-im, |2m1m3 x2m1ms
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~

Zml Xmo X2 — [yml Xma ><2;3132"'3m2 ]27"17"2 X 2M1m2

= bl “ mq m1m
Loy xmy x2 [ﬂfmlmeXQ;lm__lm]z 1m2 5 gm1my .

3. Transition Matrices and
Spatial Entropy

3.1. Transition matrices

Based on the definitions of the ordering matrices
Xosmgxms 0T oxm,xms having been defined, high
order transition matrices Az.oxm,xm; can now be
derived from Ag.ox2x2. As in the two-dimensional
case [Ban & Lin, 2006], a basic set B C Yaoyxox2
is assumed be given. Define the transition matrix

Agaxoxo = Agoxaxa(B) by
Apioxax2 = [Az:2x2x2:i100 |24 %24 (33)
where

Ag:2x2x2:irip = 1 if 4,4, € B,

=0 otherwise. (34)

o . . . 2
Then, the transition matrix Az.2xm,x2 is a 272 x
22m2 matrix with entries am;gxmﬂg;ili?,g where

QA 2xmax2sitia — Qy;2Xmax2;5152..Jmy

mo—1

= H Q23 2% 2k g1 (35)
k=1

Before Ag.2xm,x2 is introduced, three products of
the matrices are defined as follows.

Definition 3.1. For any two matrices M = (M)
and N = (Ny;), the Kronecker product (tensor prod-
uct) M® N of M and N is defined by

M® N = (M;;N).
For any n > 1,
N"=N@N®- - -®@N,

n-times in N.
Next, for any two m X m matrices

P=(F;) and Q= (Qy)

where P;; and @;; are numbers or matrices, the
Hadamard product P o Q is defined by

PoQ = (P - Qij),

where the product P;; - Q;; of P;; and @;; may be a
multiplication of numbers, of numbers and matrices
or of matrices whenever it is well-defined.

Finally, product & is defined as follows. For any
4 X 4 matrix

mir M1z Ma1 M2
mig  Mig Moz Moa| |:M2;1 M2;2:|
Mo.g Moy

)

My =
m31 M3 T1N41 1142

)

m33 T34 TN43 144 |
and any 2 X 2 matrix

N1 No]
N — ,
N3 Ny

where m;; are numbers and Nj are numbers or
matrices, for 1 < 14,7,k < 4, define

m11 N1 mi2Na2 mai N1 moaNo

mi13N3  mi1aNy ma3N3 mogNy

My®N =

m31 N1 mgzaNo mai N1 mgaNo

m33N3  m3aNy ma3N3  myaNy

Furthermore, for n > 1, the n + 1-th order of tran-
sition matrix of Ml is defined by

M1 = OME = Mo@Mo® - - - @M,
n-times in Mly. More precisely,
M, 41 = Mo®(&Mj 1)
_[Maa o @M Mapo <®M§—1>]
Mz 0 (@My 1) My o (@M5 ™)
('mi1 My miaMpo ‘ mo1 Mp.1 moa M0

m13Mp.3 miaMy.q | mozMy.3 mogMpy

m31 Mp;1 mga My | magrMy.1 mas Mo
g3 M3 m3aMpa | mazgMpz maaMypa
(M1,

_Mn+1;3

Mn+1;2:|
)
My 14

where

- M,1 M,.
e |

My.3 M4
Here, the following convention is adopted,
®M3 = Es,
where [Es is the 2 x 2 matrix with 1 as its entries.

Theorem 2.1, yields results for Az.o2xm,x2 as Tp,
in Theorem 3.1 in [Ban & Lin, 2006]. Indeed,

3Use (2% 2% 2;5i1is 1O substitute ag.ox2x2;i,,i, for simplicity afterward.
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Theorem 3.2. Let Ay .oxax2 be a transition matrix
that is given by Eqs. (33) and (34). Then, for high
order transition matrices Ag.2xmox2, Mo > 3, the
following three equivalent statements hold:

(I) Agoxmax2 can be decomposed into mqy succes-
swwe 4 X 4 matrices

Az;2><mg><2 = [Aa:;2><m2><2;j1]4><4a

where 1 < j1 < 16. For fized 1 < jy,
J2y -y Jk < 16,

Az2xmax 21 ja---ju = [Aa;2xma x 21 ja-+-jrdn 41 14x 45

where 1 < jry1 <16 and 1 < k <mg—1. For
fized ji, 52, dme—1 € {1,2,...,16},

Az;2><m2 ><2;j1j2---jm2_1: [ay;2><m2 ><2;j1j2---jm2]4><47
defined in

where Gy;2><m2 ><2;j1j2---jm2 &

Eq. (35).
(IT) Starting from
Aac;2><2><2 = [Aa:;2><2><2;j1]4><4
and

Az;2><2><2;j1 = [ay;2><2><2;j1j2]4><4,

for ma > 3, Ag.oxm,x2 can be obtained from
Az (ma—1)x2 by replacing Agoxaxa;j, with

(Az:2x2x2:51 )ax4 © (Azax2x2)ax4-
(III) For mg > 3,
Azoxmyx2 = (Az2x (ma—1)x2)92(ma—1) x92(my—1)
o (E22(m272) ® Azaxax2),  (36)

where Eq. is the 28 x 2% matriz with 1 as its
entries.

Proof
(I) The

X2><m2 X255152 Ik

proof involves simply replacing
and  Y2xmox2;jijo-jmy, DY
Azi2xmax2ijijo-gr, A Ay:2xmyx2ij1jo-jim, 10
Theorem 2.1, respectively.
(IT) follows directly from (I).
(IIT) follows from (I); Az:oxmox2 = [Az2xmax2:j1)s
1 < j; < 2% (I) yields the following formula;

Agaxmyx2 = [ay;QXQXQ;jlhA:v;?X(mzfl)x2;j2]
= (Azs2x (ma—1)x2)92(ma—1) y92(ma—1)
X [E22(m2_2) X Aa};2><2><2]-

The proof is complete. W

Remark 3.5. As stated in Remark 2.2, the following
formulae apply

Agaxoxms = [az 2x2xm3;k1kg- kg — 1km3]22m3x22m3
Ayml><2><2 [azm1><2><21112 “Imyq — 1Zm1]22m1><22m1
Agaxaxms = la; 2,2x2xmaskiko kg —1kms Jo2ms x2ms
A, M X2X2 [aa:,m1><2><2 d1dg zm171%m1]22m1><22m1
Az 2Xmo X2 = [ ><m2x2;3132~~~§'m2713m2]22m2><22m2'

Now, the transition matrix Agz.oxm,x2, With

respect to the ordering matrix Xoxm,x2 can be
obtained. Additionally, by using Theorem 2.4 yields

Theorem 3.4
Ai;2><m2 X2 = Ptg;zme X2A$;2Xm2 X?Px;QXmg X2-
Proof. The proof involves simply replacing

y2><m2><2;j1j2...jm2 by ay;QXmQXQ;jle...ij in Theorem
24. N

Theorem 2.5 yields transition matrix
Agosmoxms fTom Agoym, x2. Equation (31) yields
the transition matrix

A§c;2><mg><2 - [Ai;2><m2 ><2;k1] (37)

and

Ai;2><m2><2;k1 - [az;2><m2><2;k1k2]- (38)

Therefore,

Theorem 3.5. Let Aj.oxm,x2 be a transition matriz
given by Eqs. (37) and (38). Then, for high order
transition matrices Az.oxmoxms, M2 > 3, we have
the following three equivalent statements hold,

(I) Azoxmoxms can be decomposed into ms3 suc-

cessive 2™M2 x 2™2 matrices:

Ai;?Xmg Xxmsg — [Aa?;2><m2><m3;k1]2m2 X2™M2
where 1 < k < 22m2. For fized 1 <

2

k15k27°°°7ké <2 m27

Ai;?XWQ xmaz;kika---kp

= [Az:2xmaxmaikika--kekes1]2m2 x2M2

where 1 < kpyq < 22m2 gnd 1 < { < mg — 2,

Ai";2><m2><m3;k1k2---km3_1
= [az;2><m2Xmg;klkg---km3]2m2 X2M2
where 1 < kpy < 222 and by Eq. (32)
ma—1

H QAz;2xma X 2;kekotq -
(=1

Az:2xmsa xmg;kiko-kmg =
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(IT) For any m3 > 3, Azoxmoxms can be
obtained from Agz.oxmyx(ms—1) by replacing
Ai’;2><m2><2;k1 with

(Ag:2xma x2:k1 )2m2 x2m2 0 (Ag:25my x2)2m2 x2ma .

(III) Furthermore, for ms > 3,

Ai“;2><m2 xXms3
= (Aiﬂxmg X (777,3—1))27"2(7"3*1) x 2ma(m3—1)

o) (E2m2(m3—2) & Ai‘;?XmgX?)' (39)

The proof closely resembles that of Theo-
rems 2.1 and 3.2. Details of the proof are obvious
and repeated, hence can be omitted.

Remark 3.6. As in Remark 2.6, the following formu-
lae are obtained

AJ} ;2XmaoXms — ay 2XmaXms;j1je-- ]m2]2m2m3><2m2m3

[
Ay im1X2xXms — [az,m1 X2Xms3; k‘lkg k’m ]2m1m3 X 2M1m3
Ay ;m1X2XxXms3 — [a'l’ M1 X2Xm3;i1ie- zm1]2m1m3 X 2m1m3
A, jm1Xmax2 = [CL 9ym1 Xma X2;j1jo Jm ]2 MM X QMM
Az§m1><m2>< [CLI lemQXQZIZQ lm ]2m1m2 X 2mM1m2 .

Finally, the spatial entropy h(B) can be com-
puted from the maximum eigenvalue Az 5, ms Of
AG.95ms xmy- Indeed,

Theorem 3.7. Let Az.9.m,m, be the mazimum

eigenvalue of Az.oxmyxms, then

IOg )‘i’;?,mg,m3

h(B)= lim
moms

mg,ms— o0

(40)

Proof. By the same arguments as in [Chow et al.,
1996a], the limit Eq. (1) is well-defined and exists.
From Az.2xmoxms, for mo > 2 and mz > 2,

1
Lgimi xmaxms (B) = Z (Aggxmgxmg) ij
1<i,j<2mams3

= (AT xms )|

T;2XmaXms

As in the one-dimensional case,

10g | (AT g xms )|

T;2XmaXms

= lOg Ai‘;?,m2,m37
mi1—00 my

as for example [Ban & Lin, 2005]. Hence,

IOg Fi’;ml Xma Xms3 (B)
mimams

( lim 10g Fi’;mlxmgxm3 (B))
mi1—00 mq

hB)=  lim

mi,m2,m3—0o0

= lim
m2,m3—0TN9N3

IOg )\i;Z,mg,mg
moms '

= lim

mg,ms— o0

The proof is complete. W

Remark 3.8. Let )\I;Q,m%m:}, Ag;m1,27m3a >\y;m1,2,m3a
Azomimo,2 and A m, o be the maximum eigen-
value of A{L‘;szngga A'@;7’r11><2><7'r137 Ag,(;177,1><2><177,3a
Az sxmax2 and Ay wm, x2 Tespectively. Then,

10g Az;2,mo0,ms

h(B) = lim
moms

mg,ms—00

10g Agimi ,2,ms
mims

= lim

mi,ms—o00

10g Ayimy 2ms
mims

= lim
mi,ms—o00

IOg >\,’2’;W17m2,2
mimsa

= lim

mi,mag—00

IOg >\z;m1,m2,2
mimsa .

= lim
mi1,Mm2—00

The detailed proofs are as above.

3.2. Computation of A\,,n and
entropies

The last subsection provided a systematic means
of writing down Az.oxmyxms from Ag.oxoxs. As in
a two-dimensional case [Ban & Lin, 2005], a recur-
sive formula for .2, m, can be obtained in a spe-
cial structure. An illustrative example is presented
in which Az.2xmyxms and Az:2,m, ms can be derived
explicitly to demonstrate the methods developed in
the preceding subsection. More complete results will
be presented later.
Let

1 1 1 1
6=, o ma E=m=[ | @
1 0 1 1

and
Apoxax2=GROERERE. (42)

Proposition 3.9. Substitute Ay.ox2x2 into Egs. (41)
and (42). Then,

(1) Az;2><mg><2 = ®(G b2y E)m2_1 ® (®E2)7 (43)
(i) Agzxmyxe = (@G™ 1) @ (@E™H), (44)
(iii) Ai;QXWQ xXm3 — ®((®Gm2_1) ® E)m3_1

® (RE™2). (45)
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Furthermore,  for the mazimum  eigenvalue
A2:2.mams O BDiasmoxms, the following recursive
formulae apply:

A£;27m2+1,m3 = 29m3_1)‘§:;2,m2,m3 (46)
and
)‘i§2,m2,m3+1 - 2gm2_1)‘5€;27m2,m3 (47)
for mo, ms > 2 with
Ai222 = 2°g. (48)

The spatial entropy is
h(Az;2X2><2) = log 9, (4'9)

where g = (1 ++/5)/2, the golden-mean.

Proof. The proof is described only briefly, and the
details are omitted for brevity.

(i) can be proven by Theorem 3.2 and induction
on my. Indeed, by Eq. (36),

Agiox3xa = (Azaxax2)axa 0 (Foz @ Agaxoxa)axa
=(GOEREQE)x4°o (EQER(GIEREQ® E))ixa
_(GoE)® (EoE)®(EoG)® (Faxso(E®E ® E))axs
=GRIFRGRERQFE®E.

Assume that Aoy (m,—1)x2 = (G ® E)™272 @ (®E?). Then by Eq. (36) again,

Azxmaxz = (Bgax(ma—1)x2) © (OEM272) @ Agigyoxs)
= (®(G® E)™ 72 @ (E?))pmy-2y90my—2 0 (@B ™ 2)) @ (G E® E ® E)y2my2,92my 2
= (®(G® E)™ 2 ® (E ® E))g2my—2y92my -2
(RERE) 2R (GRE)® (E® E))y2my—2y492my—2

G ® Byl g (F?).

R(GoE)®(EoE)]™ 2@ (FoG)® (Eo(E® E®E))
=0(GeE)™ 2?22 (GRE)® (E®E)
®(

(ii) The following property of matrices is required and detailed proofs are omitted: For any two 2 x 2

matrices A and B,

P(A® B)P = B® A, (50)

where P is given by Eq. (28). Equation (44) is proven by induction on msy. When my = 2, by

Theorem 3.1,
Agoxaxa = Pi;zxzszx;waQPz;zxzxz
= (Py2) Apoxax2Puo
=G (P(E®E)P)® E
=GAFRFERQFE
by Eq. (50).

Now, Eq. (44) is assumed to hold for mg — 1;
Ai;?x(mg—l)XQ = (®Gm272) & (@EmQ)

Then

__ ot
A55;2><mg><2 - IP)gc;2><m2><2Aac;2><mg><2[P>gc;2><mg><2

- [(P2m2;2p2m2;4 e P2m2;2m2—2)(P2m2;3P2m2;5 e P2m2;2m2—3) e (Png;mg)]t

Ax;?XmQXQ[(PQmQ;QPQmQA e P2m2;2m2—2)(P2m2;3P2m2;5 e P2m2;2m2—3) e (Png;mg)]
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= (Pamyima) ** (Pomg;3Pomass + +  Pamas2ma—3)[(Poma 2 Pomasa -+ - Pamysomg —2)
(©(G® E)™ ! @ (QE?)(Poms2Pamaia - Poma;oma—2)]
X (Pamg;3Pomyss -+ Pamas2ma—3) -+ (Pomymy )

= (Pomgima) - (Pamoi3Pamoss - - Pamaszms—3)[G ® (®(G ® B)™ 72 © (9E7)) ® E]

(P2m2;3P2m2;5 o P2m2;2m273) o (P2m2;m2)
= G @ {(Pa(my—1)ms—1) - (Pa(my—1):2Patms 114 - - Pa(ms—1):2(ms—1)-2)[@(G @ E)™2 1]

(PQ(mg—l);QPQ(mg—l);ll o P2(mg—1);2(m2—1)—2) o (PQ(mg—l);mg—l)} QF

=G (P
=G Azax(my-1)x2 ® E
=G (®G™ %) @ (E™))® E
= (©G™ ™) © (E™ ).

x;2><(m2—1)><2Aa:;2><(m2—1)XQPJ:;QX(mQ—l)><2) QF

(iii) For a fixed ma, these results are proven by induction on mgz > 2. Assume that Eq. (45) holds for

mg — 1;

Ai;2><m2><(m371) = ®((®Gm271) & E)m372 X (®Em2)

Then, by Eq. (39),

Ai’;QXmg xXms3

= A:i";2><mg><(m;371) o ((®Em2(m372)) ® Ai;?XmQXQ)

— [®((®Gm271) ® E)msz ® (®Em2)] o [(®Em2(m372)) ® (®Gm271) ® (®Em2+l)]

For the maximum eigenvalue Az:2,m, ms,
Eq. (48) is easily verified. Equation (46) is estab-
lished for fixed mg using Eq. (45), yielding

Ai;2><(m2+1)><m3
= ®((®G™) ® B)™ ! @ (9E™ )
= (G® (@™ ) @E)™ ' ® (2E™ ® E),
which implies

—1
>\§:;2,m2+1,m3 = 2gm3 A

see [Bellman, 1970; Gantmacher, 1959] and [Horn &
Johnson, 1990].

Similarly, for a fixed mgy, Eq. (47) is proven
using Eq. (45) again:

;2,m2,ms3>

Aa?;2><mg><(’rn3-‘,—1)
= ®((®G™ ™) @ E)™ @ (9E™)
= ®((®Gm271) ® E) ® Ai‘;?XWQXm37
which implies
)\:2";2,m2,m3+1 = 2gm2_1)\§:;2,m2,m3-

Finally, Eq. (49) follows from Egs. (46) and (47)
and Theorem 3.7. The proof is thus complete. M

= ®((®Gm2—1) ® E)m3—2 ® ((®Gm2—1) ® (®Em2+1))
®((®Gm271) ® E)m:s*l ® (®Em2).

4. Connecting Operator

This section introduces the connecting opera-
tor and employs it to derive a recursive for-
mula between an elementary pattern of order
(my,ma,mg + 1) and that of order (mq,ma,ms).
It is also adopted to obtain a lower bound on
entropy.

4.1. Connecting operator in
z-direction

This subsection derives connecting operators and
studies their properties. For brevity, only the con-
necting operator in the z-direction is discussed but
the other cases are similar, and will be considered in
the following remarks. For clarity, as in the former
section, two symbols on lattice Zaxox2 are exam-
ined first.

According to Theorem 3.5, the transi-
tion matrix Az.oxm,xms can be represented as
Ag95ma xma:ar Where 1 < o < 22m2 g g om2(ms—1) 5
2m2(ms—1) matrix.
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For matrix multiplication, the indices of Az.2xm,xms are conveniently expressed as

Ai;2><m2><m3;11

Ai;2><m2 xms3;21

Ai";2><m2 xXmgz;2™21

Clearly, Aj. i2XmeXms;a T Az, i2xmaxXms3;B1 025 where
a = a(fr,P2) = 2™ (B — 1) + Ba. For my > 2, the
elementary pattern in the entries of A;”;X maxms 1S
given by

Ag;2xmz xma; 1 Ba Adi2xma xms; 8285
o Ai;me2><m3§ﬁmlﬁm1+1
where 5, € {1,2,...,2™} and 1 < r < m; + L.
A lexicographic order for multiple indices I, +1 =
(B1B2 -+ By Bmy+1) is introduced, using

mi

K(Ipyp1) =1+ ) 27m0™=7(8, —1).  (51)

r=2

Now, A(k)

Gy ma miga CALL be represented by
Ag;2xmz xma; 1 Ba Adi2xma xms; 8285

' 'Ai;me2><m3§ﬁmlﬁm1+l’ (52)

where

a = (B, Bni41) = 2" (61 = 1) + Py 1

and

k= ,C( m1+1)
as in Eq. (51). Accordingly, Axéxm2xm3 can be
expressed as
[Ai";mLMLms;a]QW X225 (53)
where 1 < a < 222 and
gma(my—1)
Agimy ma,msia Z Ai(l?l?’znl,m27mg;a' (54)
k=1
Moreover,
Vi ma.mssee = (A7, ). (55)

&;ma,ma,mz;o

where 1 < k < 2ma(mi-1) Vaimimo,maia 18 @
2m2(m1-1) column vector that comprises all elemen-
tary patterns in Az, mo,ms;a- The ordering matrix

A m1
Vasma,mams OF AZS 0 wm, 18 oW defined as

[Vﬂ?;mhmz,m:s;a]?m? x2M2, (56)

where 1 < «a < 2272 The ordering matrix
V:m1,mo,ms allows the elementary patterns to be

tracked during the reduction from Ax 25max (ms-+1)

Ai";2><m2><m3;12

Ai";2><m2 xXms3;22

Ai;2><m2 Xmgz;2™M22

Ai";2><m2 xXmg;12™2

Ai";2><m2 Xmg;22™M2

Ai;2><m2 Xmg;2"M22mM2

to AZngQXm;), This careful book-keeping consti-
tutes a systematic way to generate the admissible
patterns, and as in Sec. 4.2, lower-bound estimates
of spatial entropy.

This simplest example is considered first to

illustrate this concept.

Example 4.1. For m; = 2, mo = 3, mz = 3, the

following can be easily verified;
2 —
AZoxsxs = [Aa:2.3 302323,

where 1 < ay < 26 and

m,2,3 3;a1

E : Am,2,3 3;a1?

and for fixed a7 and k the represented pattern of

A%

2,330, ar€ in the following form.

X X X
X X X
X X X
X X X
X X X
X X X
«
a1l @12 13
kl k2 kd
@14 15 Q16

If the red symbol is defined equal to 1, and
white symbol equals 0, then a; = 20011 + 2%aq0 +
23013+ 2214 + 2015 + a1+ 1 and k = 22k + 2k +
ks + 1. Hence

_ (7(k) t
‘/}:;2,3,3;(11 - (Ax,2,33041) )

where 1 < k <23 and 1 < a; < 25. Define
_ (A(k) t
Vi‘;27373;a1;a2 - ( 1,2,3,3,051,&2) ’
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is

1, a0 < 26 and the represented pattern of A(ﬁ)

where 1 <k <2 and 1<«

%;2,3,3;1 5002

Q23

Q22

Q21

26

Q25

Q24

13

Q12

a1

k3

ko

Ky

Q16

a5

Q4

Therefore, for instance,

Vi:2.3.3:1:1 = Simg:2,3:11Viai2,3.2:1,

1

1

1

1

1

1

1

1

—123 %23,

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

VAV AV Ay 4V 4V 4V 4y 4

+

Y A AV Ay AV A AV Ay A
VAV AV AV 4V SV - 4V 4y 4
N\ F |\ F | F |\ F

+

VAV AV AV 4V 4V 4V 4y 4
A AV AV AV A AV Ay 4

+

VAV AV Ay 4V 4V 4V 4y 4
A A v 4V 4V 4V &V 4

+

VAV AV AV 4V 4V 4y 4y 4
Y AV AV AV AV AV AV AV A

+

VAV AV Ay 4V 4V 4V 4y 4
VAV AV AV 4V 4V 4V 4V 4

+

VAV AV Y 4V v 4y 4y 4
Y AV AV AV AV V. AV v 4

VAV AV Ay 4V 4V 4V 4y 4

+

|\ || || | |

and the represented patterns of Si.m,:23:11

*Aluo asn feuossed 104 ‘¥T/SZ/y0 U0 ALISHIAINN ONNL OVIHO TYNOILVYN Aq
WI0J°31JUS 13SP [JOM" MMM W01} P30 [UMOQ 1786-256-8T'800¢ SCeYD uoieainiig 't u|
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The above derivation reveals that V3.2 33.0,:a0 Definition 4.2. For my > 2, my > 2, define

can be reduced to V3.2 3 2.4, by multiplication using )

connecting operator Sj.m.:2.3:0;0,- Lhis procedure (Cismasmims )a2ma x92ma = ( j;;mg;mlmg)??m? x22m2
can be extended to introduce the connecting oper- (57)
Ator Semgimims = [Sizmamimasaras” ], Where 1 <

ap,ay < 222 for all my > 2, mg > 2. where the row matrix Sé’;ilg);mlm? of Sz.maimims 18

defined in Egs. (13) and (14). And

Ci’;m3;m1m2;i1i2 = [(Az;2><m2><2;i1)2m2 x2m2 O (Az;(ml—l)XmQXQ)T"Q ><2m2]2(m1*1)m2 x2(m1—1)mg
9} (EQ(ml —2)mo ® ((Aiﬁ%Xm2X2)§2)2m2 X 2Mm2 )2(m171)m2 ><2(m171)m2 (58)

where (A(T) )(c) is the ioth block of the matrix (A(T) )(©), (A(T) )(©) is the column matrix of

2;2Xmo X2/ 512 2;2Xmao X2 2;2Xmao X2
Ag%meXQ, Ag%xm%Q is the row matrix of A..9xm,x2 and Ej, is the 2k % 2k matrix with 1 as its entries.
Remark 4.3. By a similar method, the following connecting operators can also be defined.
CI§m2§m1m3§i1i2 = [(Ay§2X2Xm3§i1)2m3 x2m3 O (Ay;(ml—l)XQXm3)2m3 ><2m3]2(m1*1)m3 % 2(m1—1)mg
© (EQ(”H*?)WB ® ((Ag%xzxm);(;))zms x23 )2(m1*1)m3 x2(m1—1)m3
Coimsimimasivia = [(Azimyx2x2;i1 )21 x2m1 © (Asim x (mo—1)x2)2m1 x2m1 |g(mg —1)my y 9(my—1)my
o (EQ(WQ*Q)"H ® ((A(;J)nl ><2><2);(Z‘02))2m1 x2M1 )2("12*1)7”1 x2(mg—1)mq

Cy;ml;m2m3;i1i2 = [(Aw;QXQXms;i1)2m3 x2m3 © (Ax;Qx(mzfl)Xmg)Qm?) X2m3]2(m2—1)m3 x 2(ma—1)m3

0 (Bgmg—2ma ® (AL ) oy ) 5)2ma x2ma ) g(umg—1yma x gomg—1ma

Cﬁ;mz;M1m3;i1i2 [(Ag;ml X2X 2511 )le x2m1 O (Ag;ml ><2><(m3—1))2m1 X 2™M1 ]2(m3—1)m1 x 2(mg—1)my
o (EQ(m3—2)m1 ® ((Ag(;;n ><2><2);(i02))2m1 x2m1 )2(m3—1)m1 x2(mz—1)m
CZ;m1;M2m3;i1i2 = [(Ai;QXmM?;h)Zm? x2m2 O (Aa‘:;QXmgx(mg—l))T”? X2m2]2(m371)m2 x 2(m3z—1)mgy
0 (Ey(mz—2ymy ® ((AX%XWQ)SZ)W X 2M2 ) g(mg —1)my y 9(m3—1)ms
Theorem 4.4. For any mo > 2, m3 > 2 and 1 < iy,iy < 22M2,
Cfﬁ;ms;(ml-‘rl)mmilm - [ai";2><m2><2;i1ici";m3;m1mmii2]’ (59)

where 1 < i < 22ma2

Proof. By Theorem 3.5 and Remark 3.6,
A imyxmax2 = [Az2xmax2;i1 © Azi(mi—1)xmax2ls
where 1 < iy < 222 Hence, by
Ci‘;mg;(ml-i-l)mQ;iliQ = [(AZ;QXm2X2;i1) © AZ;mMmQX?] © [EQ(ml—l)m2 ® (AZ%XmQ x2),(@(;)]
= [a3;2xmax2;i1i (Az;2xmax2;i © Azi(mi—1)xmax2)] © [B2mz @ (Eyny—2ymy @ (Ag;gxm ><2);(§2))]
= [A3:250ma x2:i1i Caymaimimaziia |22 x 2m2

where 1 < i < 2?72, The proof is complete. B

Notably, Eq. (59) implies Ci.myimimosij 1

A2 mo X 23142 A 2xma X 2iigdz ** ° A&52Xma X 2imy by 41

4 . . . .
Use Sgimgimima;aras 10 substitute Sz.m..mimasaq,a. for simplicity afterward.
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with 41 = 7 and tp41 = J. Ciimgimime;ij COM-
prises all paths of length my + 1, that start at ¢
and end at j. Indeed, the entries of Cg.p3:m,m, and
A (m1+1)xmo x2 are the same. However, the arrange-
ments differ.

Substituting mgs for ms + 1 into Eq. (52) and
using Eq. (39), AW

Fomy ma,ms+Lia could be repre-
sented by

Ai";2><m2 X (m3+1);51ﬁ2Ai";2><m2 X (mz+1);8203

“+ Ag2ma x (ms+1);8my By +1

mi
= [T [08:25msx2:0,6 45,2y g, 3, 2702 272
Jj=1

(60)
where 1 < £y, 2 < 2™2 and a; = a(f;, Bj+1) and
& = a(f,F2) for 1 < j <my.

After m; matrix multiplications have been per-
formed as in Eq. (60),
(k) _14k)
Ai’;ml,mg,m3+1;a1 - [Aa?;ml,mg,m3+1;a1;a2]2m2><2m2’

(61)

where 1 < ag < 22™2 and AP

#im1,ma,ma+Lagay GO0
be represented by

gmg(my—1)
. l
Z K(x, mima; o ao; k, K)Ag‘:;)ml,mg,ms;w
/=1
(62)
0

which is a linear combination of Ai;ml,mz,ms;az
with the coefficients K (&, mymeo; ajae;k,£) which
are products of azoxmyx2a;a, 1 < J < my.
K(Z,myme; ajae; k,f) must be studied in more

detail. Notably,

where 1 < g < 222

gmao(my—1)

(k)
Z Ai’;mhmmms—kl;al
k=1

Ai’;mhmmms—kl;al =

and

omg(mq—1)

(k)
Z Ai;m17m2,(m3+1);a1
k=1

gma(my—1)

_ Z A(k)
o &yma,ma,(m3+1);a1;00 )

k=1 2mM2 x 9M2

where 1 < as < 222, Now, Vaimi ma,ma+1iar;as 15
defined as

= (A% ). (64)

Vami ma,ma+Lianian Zym1,ma2,m3+1o0;500

From Egs. (62) and (64),

Vi§m17m2,m3+1;a1;a2

- K(.’i’, mima; a1a2)V§:;m1,m2,m3;a2 (65)
where
K(i‘, mimeaj; alag) = (K(.’fi, mimeo; g (eg; k‘, 6)),

1 < k0 < 2m2(mi—1) jg 5 gma(mi—1) » gma(mi—1)
matrix. Now

K(l‘, mima; CKICVQ) = Si;mg;m1m2;a1a2
must be shown as follows.

Theorem 4.5. For any m; > 2, me > 2 and
mg > 2, let Sima:mima:aias D€ given as in Egs. (57)
and (58). Then,

m ~

a};éXmQX(m;ngl) - [Ai;m1,m2,m3+1;a1]2m2 X 212 Vx;m1,m27m3+1;a1;a2

(63) = Si;Ms;M1m2;a1a2 Viimi ma,ms;an (66)
I or equivalently, the recursive formula
gma(mi—1)
(k) _ R 0
Ai;ml,m21(m3+1);a1 - Z (Sx;m?’?mlm??ala?)MAi;mhmz,ms;az ’ (67)
=1 212 X 2M2
where 1 < agy < 222, Moreover, for ms = 1,
gma(mi—1)

Af) - (S ) (68)

&my,mae, 200 Tymazymima;o o )kl )

/=1

2M2 x 22

where 1 < ap < 222 for any 1 < k < om2(mi=1) gnd oy € {1,2,...,22m2},
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k)
Proof. From Eq. (61 Al can be
f q. (61), &yma,ma,(ma+1);01;02
represented as the pattern
X X X A
X X X
X X X
X X X
X X X X
Qa1 o9 Q2m,
X x X mg + 1 layers
X X X
X X —
a2(7ng+%2(m2+3/ e Q2(2mz)
11 @12 Qlmy
k1 ko kﬂlz
/ﬁu('”fz)*' K (my—2)+2, Kma(mi—1)
Q1 (ma+1) /L (ma+1) Q1(2maq)

(69)
and AY as the pattern
T;m1,ma,m3;a2 ’
X X X
X X x
X X X
X X X
X X X X
. mg layers
@21 Q22 Q2m,
él [2 émz
b =201y 215 Lo (mi—1)
Q2 (my+1) /X2 (my+2) Q2(2m,)
(70)

From Definition 4.2, Si.ms:mima:a1as re€Presents the
following pattern

@21 Q22 N Q2

51 22 ot Emg

s (mi =241 U (-2 42 Ly (ma—1)

Q2(my+1) az(mﬁ/ Q2(2my)
a1 @12 Q1my
ky ko Ky
/éu(m\ﬂ)H Ema(mi—2)4+2 Ko (my—1)
Q1 (ma+1) Uél(mﬁ}/ Q1(2my)

(71)
Therefore, Eq. (67) follows from Egs. (69)—(71).
Also, from Eq. (65), Eq. (66) follows.

Next, Eq. (68) follows simply from Egs. (69)
and (71). W

For any positive integer p > 2, applying
Theorem 4.5 p times allows the elementary patterns
of A;’gxmﬂ (ms-p) to be expressed as products of
a sequence of Si.ngimima;aza;y, and the elementary
patterns in A%l . The elementary pattern in

Zgwn?x (matp) 18 first considered. For any p > 2

and 1 < ¢ < p—1, define
(k)

Z;m1,ma,m3+p;a1;a2;...50q

_ [A(k)

A . . . . . m2 m2
Z;my ,m27M3+p,a1,a27~~~70¢q,aq+1]2 X2M2,

where 1 < a1 < 22m2  Then

A®)

Zym1,m2,m3+p;a1;02;..;Qpt1
can be represented as

gmg(m1—1) gmg(my—1) gmag(mq—1)

la=1 l3=1 lpi1=1
pt1
< | T K (@ mama; i yevis i1, 45)
i=2
o Ap+1) (72)

Tymy;mesms;apt1

where and ¢; = k can be easily verified.
Hence, for any p > 2, Eq. (63) can be general-

ized for Agéxm2x(m3+p) as a, (2m2 )P+1 % (2m2 )P+1



Int. J. Bifurcation Chaos 2008.18:957-984. Downloaded from www.worldscientific.com
by NATIONAL CHIAO TUNG UNIVERSITY on 04/25/14. For personal use only.

978 J.-C. Ban et al.

matrix
my
Az i2xXma X (m3—+p) [A@mlym%(m?»‘f'l’)%al?042§---?ap+1]’ (73)
where
9(my—1)mg
_ § : (k)
Ai;m1,m2,(m3+p);a1;ag;...;ap_H - Aa};ml,m27(m3+l);a1;ag;...;ap_H'
k=1
In particular, if a1, ag,...,app1 € {272(s — 1) + 8[1 < s < 22} then Az o, (ms+p)iariass..saps, 168 0N
the diagonal of A7) 2smax (matp) 1 B (73). Now, define
Ve _( (k) )t
Tim1,m2,m3+p;a1;02;..;Qp41 mi,ma,m3+p;a1;az;..;0pp1/

Therefore, Theorem 4.5 can be generalized to the following Theorem.

Theorem 4.6. For any m1 > 2, mg > 2, m3g > 2 and p > 1, Viny momatpiaras;...;

sented as

Si;m3;m1m2;a1a2 Si“;m:s;mlmmaza:s o

where 1 < q; < 22m2 and 1 <i<p+1.

Proof. From Egs. (72), (65) and (67),
A%

Zyma,m2,m3+p;0an;02;.. Q41

gma(m1—1) gmg(mq—1) oma(m1—1) /pi1

wapy1 could be repre-

’ Si“;?ﬂa;mlmz;apapﬂ Vi;ml,mz,ms;apﬂ

o . . (Zp+1)
= 2 > o > (I EGmimeaiiaition ) | AL e,

lr=1 £3=1 lpri=1 \i=2

gmg(my—1) gmg(my—1) oma(mi—1) /pi1

_ (ép+1)
- Z Z e Z H(S@mi’»%mlm%ai—lai)Zi—léi Ai‘;m17m2,m3;ap+1
lo=1 l3=1

lpr1=1  \i=2

gmg(my—1) gmg(mi—1) gmag(mq—1)

= Z Z T Z ((Si:;mg;mlm2;a1a2)€1€2 (Sﬁr;ms;m1m2;a2a3)ézé3
lo=1 l3=1

Lpy1=1

- (Ss ) ) (€pt1)
Eymaimima;apapt1 N plpyt Tym1,m2,m3;0p41
gmag(my—1)
_ (S S .. S, ) (fp+1)
- TiM35MmM1m2 ;1 2~ Tims3mims ;o203 a:;mg;mlmg;apocp+1 k‘Zp+1 j;m17m2’m3;ap+1 .
lpr1=1

The proof is complete. M

4.2. Lower bound of entropy

In this subsection, the connecting operator
Cé:masmims is adopted to estimate the lower bound
of entropy and in particular, to confirm that is pos-
itive. The following notation is used.

Definition 4.7. Let V = (Vl, e ,VM)t, where V}.
are N x N matrices. Define the sum over V}, as

N
Vi=) Vi (74)
k=1

If Ml = [M;;] is a M x M matrix, then

M M
MV =) MV

i=1 j=1
Notably, (74) implies
9(m1—1)mgy
_ (k)
’Vi;ml,m%ms;a’ - Z Ai’;mhmmms;a
k=1

= Aimi,ma,maia
As is typical, the set of all matrices with the same
order can be partially ordered.
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Definition 4.8. Let M = [M;;] and N = [N;;] be
two M x M matrices; Ml > N if M;; > N;; for all
1<4,5< M.

Ai;?xmg Xms Z AIA

5:25ms xms for all mg, msg > 2.
Therefore, h(Azaxax2) > MA5,9.0). Hence, the
spatial entropy as a function of Aj.2x2x2 is mono-
tonic with respect to the partial order >.

Definition 4.9. A P + 1 multiple index
Ap = (vyag - apapyy) (75)
is called a periodic cycle if
apii = oq, (76)

where 1 < a; < 22m2 and 1 <i < P+ 1. It is called
diagonal cycle if Eq. (76) holds and

a; € {2M (s — 1) +s]1 <s<2Mm2}
for each 1 < ¢ < P+1. For a diagonal cycle Eq. (75)
ap = Q1505 ;0p
and
ap" = ap;ap;---;ap.  (n-times)
First, prove the following lemma.

Lemma 4.10. Let mq > 2, mo > 2, P > 1, Ap be
a diagonal cycle. Then, for any mg > 1,

p( ;‘n;észx(mgp+2))

> P(‘(Si’;ms;mlmxalaz Si’;ms;m1m2;a2a3
. m3y/.

e Sl;m3;m1M2;OtPOtP+1) Vx§m17m272§a1 ‘) (77)
Proof. Since Ap is a periodic cycle, Theorem 4.6
implies

Vi§m1,m2,m3p+2;aﬁ>m3;a1
= (Si’;ms;mlmxalwSi’;ms;m1m2;a2a3
. m3y/,
U Sﬂ?;m3;m1M2;OtPOtP+1) Vr;mhmz,Q;al' (78)

h(A,. > lim ——
( z,2><2><2) = 0o mlmQP

Furthermore, Ap is diagonal and
’Vi;ml,m27msp+2;aﬁ>m3;a1‘ = Ai;m17m27m3p+2;071>m3;041
lies in the diagonal part of Eq. (73), with ms+p =
msP + 2. Accordingly,

p(Ag?vln1,m27m3P+2) 2 p(|Vi;m11m21m3P+2;Ome3;Oél|)'

(79)

Therefore, Eq. (77) follows from Egs. (78) and (79).
The proof is complete. W

The following lemma is useful in evaluating
maximum eigenvalue of Eq. (77).

Lemma 4.11. For any m; > 2, mg > 2, 1 < k <
2(mi=Dma gnd ap € {(s—1)2M2 +5|]1 < s < 2Mm2}, if
tr(A(k) ) =0,

ym1,me,2;01

then for all 1 < ¢ < 2m—Lma

(Sﬂ?;m3;m1mma1a2)k€ =0, (80)

for all ap € {(s —1)2"™ + 5|1 < s < 2™} such
that the kth rows of matrices Sg.myimimosaias GT€
zeros. For any diagonal cycle Ap, let U = (uqug - -
Ugmy(my 1)) be an eigenvector of Si.maimimasaras
"Si§m3;m1m2;apa1' If Uk 7é 0
o(mi=1ymz  ypen

Sﬂ?§m3;m1m2;a2a3 ’
for some 1 < k <
tr(A(Ak) ) > 0.

Zyma,me,2;001

Proof. Since Aé@m S~
Eq. (68). tT(A:E?]?;ll,mg,Z;al) = 0 if and only if Eq. (80)
holds for all 1 < /¢ < 2(mi=1)m2 The second part of
the Lemma 4.11 follows easily from the first part.
The proof is complete. W

can be expressed as

By Lemmas 4.10 and 4.11, the lower bound of
entropy can be determined as follows.

Theorem 4.12. Let ajas---apay be a diagonal
cycle. Then, for any my > 2, mo > 2,

IOg p(Sa?;mg;mlmg;alag Si’;mg;mlmg;ocgag U Si’;m3;m1m2;ocpoq)~ (81)

Proof. First, by the methods used to prove Lemmas 2.10 and 2.11 and Theorem 2.12 in [Ban et al., 2007],

lim sup — (log p(‘(si;m3;m1m2;a1a2 Si;ms;m1m2;oc2a3 T Si’;ms;m1m2;ocpoc1)m3‘/}:;m1,m272;a1 )

mg—oo 113

= log p(Si§m3;m1m2;a1a2Sﬁ;m3;m1M2;a2a3 U Sﬂ?;m3;m1M2;OlPOt1) (82)

is obtained. The detailed proofs are omitted here for brevity. Now,

h(Aa};QXQxQ) > lim

m2—00 M1M2L" m3—oco

. 1
lim sup m (10g p(‘ (Si;m:s;mﬂnz;oqaz Si;ms;m1m2;a2a3

’ Si’;ms;m1m2;ocpoc1)mgVa‘:;ml,mQ,?;m|))
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is established. Indeed, from Egs. (40) and (77),

h(A. = i —_——
(Az2x2x2) s o0 (m3P + 2)ms

1

= lim

m2m3—00 1711 (mgP + 2)m2

10g P(Az:25ms x (ms P+2))

log p(A]} )

Z;2Xma X (m3z P+2)

. 1 ) 1
> lim 7hmsup_(1Ogp(‘(Si’;mg;mlmg;alagSi’;mg;mlmg;ocgag

m2—00 11119

mg—oo 113

: Si’;m3;m1m2;ocpoq )m3 Vi;ml,mg,Q;al |))

Apply Eq. (82) which completes the proof. W

Remark 4.15. By the similar method, the following lower bounds of entropy can also be estimated.

h(A,. > lim
( x,2><2><2) Sl ey m1m3P

h(A,. > lim
( :):,2><2><2) = oo mlmgP

h(A,. > lim
( x,2><2><2) = g0 m2m3P

h(A,. > lim
( :):,2><2><2) = oo m1m3P

h(Agz2x2x2) > mlzigloo p—
Remark 4.14. The results in last three sections can
be generated to p-symbols on Zspxorxoe such as in
two-dimensional case [Ban & Lin, 2005] and [Ban
et al., 2007] and the details are omitted here for
brevity.

5. Applications to 3DCNN

This section elucidates an interesting model in
3DCNN of the application of the method. The
method is elucidated by considering a0 = a,
a1,0,0 = Qg, @0,1,0 = Ay and ap,0,1 = Qgz, which are
nonzero; in other cases, a, g, and b, g, are zero.
Then, the 3DCNN is of the form as in Eq. (6)

du; jk

5 = ikt w t af (Wgk) + anf (i k)

+ay f(wij1.k) + azf(Wijrg1)-

The stationary solution to Eq. (6) satisfies

Ujjk = W+ AV j |k + AgVip1 gk T Ay 541k

+ a2V k+1,

for (i,4,k) € Z* as in Eq. (7).

log P(Sx;mg;mlms;a1a2 Sﬂc;mQ;mlms;azas )
log P(S@;ms;m1m2;a1a2 Sgimgmimasazas
log P(Sy;rm;mgma;amgSy;ml;m2m3;a2a3 )
log P(Sé;m2;m1m3;a1a2 Ssimasmims;sanas

log p(SZ;ml;QOg;OllCMQ SZ;ml;QOg;CMQClg :

o Sﬂff;mzmlms;apoq)-
’ S@;ms;m1m2;apa1)'
o S:f:;ml;mgmg;apa1)'
: Sé;mg;m1m3;o¢pa1)'

o Sz§m1;m2m3;apa1 )

Firstly, consider the mosaic solution u = (u; ; 1)
to Eq. (7). If Uik = 1, 1e v =1, then

(a—=1) +w+ azvip1jk + ayviji1k
+ a0 k1 2 0. (83)
If wijpr < —1,ie v, = —1, then

(@ —=1) —w — (azVit1,jk + AyVi jy1k + Q205 kt1)
> 0. (84)
Equation (7) has five parameters w, a, as, a, and
a,. Three procedures are adopted to partition these
parameters:

Procedure (I). The parameters a,, a, and a;
are initially expressed into three-dimensional coor-
dinates, to solve Egs. (83) and (84), as in Fig. 3.

Clearly 2% octants (I)—(VIII) exist in (az, ay, a)
three-dimensional coordinates.

Procedure (II). In each octant are 3! relations

() :lax| > lay] > o],
(i) < [az| > [as] > |ay),
(i) : ay| > [z > |az], )
(iv) ¢ lay| > laa] > laal,

(v) :Jas] > faz] > Jay,
(i) ¢ laa] > lay| > laal-
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a’.’l}

Fig. 3. Primary partition of (az, ay,az).

Procedure (III). Each relation, denoted by |a;| >
lag| > |as|, two situations apply
(1) lar| > lazg| + |as]

@) lar] < laz] + las]. (86)

a-1

However, in the (a,w)-planes, two sets of 23 straight
lines are important. The first set is

+ .
07 (a = 1) +w + agVipr jk + Ayvi ek
+a.vijk+1 =0,

which is related to Eq. (83). The second set is

l i (a—1) —w— (azviy1jk + ayvijr1k
+azvij k1) =0,

which is related to Eq. (84), where vi i1k, Vi jt1,k
Vijk+1 € {—1,1} and 1 < r < 8 When
(ag,ay,a;) lines in the open region (I)-(VIII),
(i)—(vi) and (1)—(2) as in Fig. 3, Egs. (85) and
(86) are used to partition the (w,a — 1)-plane, as
in Fig. 4.

The symbols [m, n] in Fig. 4 have the follow-
ing meanings. Consider, for example, (as,ay,az)
lies in regions (VIII), (i) and (1) as in Fig. 3,
Egs. (85) and (86). This situation is expressed as
(VIII)-(i)-(1), and comsidered a, < ay < a, < 0

Fig. 4. Partition of (w,a — 1)-plane.
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and |az| > |ay| + |az|. Denoted by

Table 1. The intersects of Z?‘ and Ej_.

(Vi 1,5,k Vi, j41,k> Vi g k+1)

—(azviq1, 5k + ayvij1k + 0205 k1)

ci =cy (—1,—1,-1)
c2+ =c7 571,71,1;
o =g —1,1,-1
o =c (-1,1,1)
t e ( 1,. 1)
g =y ,—1,—
cr=cy (1,-1,1)
T e (171 71)
C7 :CQ s Ly T

cqg =c¢p (1,1,1)

ax+ay+az
Az + ay — az
Az — Gy + Gz
az — ay — az
*ax+ay+az
—az + ay — az
—ar — ay + az
—az — ay — Az

Then, ¢g >ci >cf >cd >0>¢f >cf >cf >
¢f > are the intersects of éj and £; on the w-axis
displayed in Fig. 4.

With reference to the local patterns on cube-
cells, +1 is represented by the symbol + and —1 is
represented by the symbol —. The 2% local patterns
can be listed and ordered, as in Fig. 5.

Now, when (w,a — 1) lies in region [m, n] in
Fig. 4, the only admissible patterns are exactly
D,®,...,@0 and @', ®@',...,®'. For instance, in
region (VIII)-(i)-(1) and (a — 1,w) € [4,8] only
0,@,@® @ and @,Q,0, @0, ®'®,®" can

be produced. This fact is equivalent to the hold-
ing of inequalities in Egs. (83) and (84) if and only
if Vijks Vi+1,5,k> Vij+1k and Vi, j,k+1 are of the form
020 ®@and @,Q,0,00, 07, ®"
Next, the transition matrix of local patterns in
region (VIII)-(i)-(1)-[4,8] can be derived as
Apoxoxo=GRIERFE®E.

Then, according to Proposition 3.9, the admissible
local patterns in oy, xms and its corresponding
transition matrices are

Az;2><mg><2 = ®(G ® E)m271 ® (®E2)7

- ¥ - ¥
| | | (
| | I |
| ! ! !
+o-mm + - - + - + + -
O @ G B
- + = +
| | | I
| | | [}
! | ! !
e Rt et et
+ + + +
® ©® @ ®
+ - + =
[} I ( |
[} I ( I
! ! ! !
N - - 4 - .
+ + + +
o @ 6 @
+ - + -
I | | |
| | I (
! ! ! !
[ o+ [ e
@/ - @/ @, - @/

Fig. 5. Ordering of local patterns in partition (VIII)-(i)-(1).
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Ai:;2><m2><2 — (®Gm2—1) ® (®Em2+1)7
Agasmyxms = ®(@G™ 1) ® E)™ 1 @ (9E™),
as in Eqgs. (43), (44) and (45).

Finally, the connecting operator is adopted to
examine the complexity of the set of mosaic pat-
terns in 3DCNN. That is, the lower bound of spa-
tial entropy in the region (VIII)-(i)-(1)-[4,8] can be
estimated.

Proposition 5.1.
E® E, then

Sz§m1;m22;11 - Cz;ml;m22;11 = (®Gm2*1) ® E’

Consider Agoxoxe = G E®

P(Szimyma2i11) = 292
and
1
h(Ax;QXQXQ) Z §1Og9,
where g = (1++/5)/2 is the golden-mean.

Moreover, since
Asxmaxms = @((@G™ 1) @ E)™ ™ @ (9E™)

and

g(mzfl)(msfl)’

the spatial entropy can be exactly computed as

— 2m2 +ms3—1

p(Ai";QXmgxmg)

h(Az.2x2x2) =logg

as in Proposition 35.9.

Proof. According to Eq. (44),
Agaxmox2 = (@G™ 1) @ (E™ )
is obtained. Evidently,
Agoxmox21 = QE™?
and
A o)) = (6™ ) 9 E.

T;2Xmao X2
By Remark 4.3, the connecting operator
)(C)

Cz;mumg?;ll = Ai;2><m2><2;1 % (A‘(Q-T;%Xm2><2 i1

= (®G™ ) Q E.
Therefore, based on Remark 4.13, the lower bound
of spatial entropy is estimated as

. 1
h(Agzaxox2) > lm ——1og p(Szimyme2:11)

ma—00 2My

. log 2g™2~1
= lim ——
ma—00 2mo
L 1
= —logg.
5 29 -

Remark 5.2. For the general template A = (aq,3+)
where aq 3, # 0, the basic set in X3y3x3 must
be extended to the basic set in X4x4x4. Then, the
method described above can be applied, as stated
in Remark 4.14. The details are omitted here for
brevity.
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