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Abstract

A pooling space is defined to be a ranked (meet) semi-lattice with
atomic intervals. We show how to construct non-adaptive pooling
designs from a pooling space. All these pooling designs are e—error
detecting for some e which can be chosen to be very large compared
to d, the maximal number of defective items(or positives). Eight new
classes of non-adaptive pooling designs are given, which are related to
the Hamming matroid, the attenuated space, and six classical polar
spaces. The general constructions of pooling spaces from known ones
are discussed.

Keywords: pooling spaces, pooling designs, ranked, atomic, semi-
lattice

1 Introduction

The basic problem of group testing is to identify the set of defective ones
in a large population of items. A group testing algorithm is non-adaptive if
all tests must be specified without knowing the outcomes of other tests. A
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non-adaptive group testing algorithm is useful in many areas. One of the
examples is the problem of DNA library screening. Suppose we have n items
to be tested. Assume there are at most d defective items and we want to
determine them in simultaneous ¢ tests. Each test (or pool) contains a subset
of items. The output of a pool is positive if an item in the pool is infected.
A mathematical model of this problem is a d-disjunct matrix (see Section ??
for formal definitions). In this paper, we define a pooling space to be a
ranked (meet) semi-lattice with atomic intervals and show how to construct
d-disjoint matrices from a pooling space. These d-disjunct matrices have a
special property described below. If we view these d—disjunct matrices as
(d—1)-disjunct matrices, then they detect e errors for some positive integer e.
As our examples show the number e is very large compared to the maximal
number d of defective items. A. Macula [4], [5] gave a construction of d-
disjunct matrices from the poset consisting of the subsets of a finite set.
H. Ngo and D. Du [7] gave a construction of d-disjunct matrices from the
poset consisting of the subspaces of a vector space. Our construction is a
generalization of their results. This generalization problems were initially
proposed by H. Ngo and D. Dul[6, p177].

2 Preliminaries

Let M be a t x n 0l-matrix. We view each column ¢ (resp. row j) as a set
R; (resp. R;) that contains all row indices j (resp. column indices ) such
that M;; = 1. M is said to be d-disjunct if the union of any d columns does
not contain another. A d-disjunct ¢ x n matrix M can be used to design a
non-adaptive group testing algorithm on n items by associating the column
indices with the items and the row indices with the pools. If M;; = 1 then
item j is contained in pool i. Let M be a d-disjunct matrix. The weight
wt(u) of a column vector or a row vector u of M is the number of 1’s in u.
For S C {1,2,---,n} with |S| < d, the test result of S in M is the union of
those columns indexed by S. A d—test result of M is a test result of S in M
for some S C {1,2,---,n} with |S| < d. It can be checked that the d—test
results of M are all distinct. The design of a d-disjunct matrix is also called
non-adaptive pooling design.

Let M be a d—disjunct matrix. Then we say M detects e errors and
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corrects | 5] errors if any two distinct d—test results of M have Hamming
distance at least e + 1; in other words, any two distinct d—test results have
at least e + 1 rows with different entries. We emphasize that the concept
of e-error-detecting and |[£|-error correcting does not only depend on the
matrix M, but also depends on the integer d. The meaning of the variables
t,n,d,e is fixed throughout the paper. e is also called the error-tolerance
number of M.

We now give the basic definitions and properties of a partial ordered set.
The expert may want to skip the remaining of this section and go to the next
section.

Let P denote a finite set. By a partial order on P, we mean a binary
relation < on P such that

i) z<z (V z€P),
(i) r<yandy<z — z<z (V z,y,z € P),
(i) z<yandy<z — z=y (V z,y € P).

By a partially ordered set (or poset, for short), we mean a pair (P, <), where
P is a finite set, and where < is a partial order on P. Abusing notation, we
will suppress reference to <, and just write P instead of (P, <).

Let P denote a poset, with partial order <, and let z and y denote any
elements in P. As usual, we write z < y whenever z < y and = # y. We say
y covers z whenever z < y, and there is no z € P such that z < z < y. An
element z € P is said to be minimal whenever there is no y € P such that
y < z. Let min(P) denote the set of all minimal elements in P. Whenever
min(P) consists of a single element, we denote it by 0, and we say P has a

0.

Suppose P has a 0. By an atom in P, we mean an element in P that
covers 0. We let Ap denote the set of atoms in P.

Suppose P has a 0. By a rank function on P, we mean a function
rank : P — Z
such that rank(0) = 0, and such that for all z,y € P,

y covers t —  rank(y) —rank(z) = 1.
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Observe the rank function is unique if it exists. P is said to be ranked
whenever P has a rank function. In this case, we set

rank(P) := max{rank(z)|z € P},

P, := {z|z € P,rank(z) =i} (i € Z),
and observe Py = {0}, P, = Ap.

Let P denote any poset, and let S denote any subset of P. Then there is
a unique partial order on S such that for all z,y € S,

z<y (inS) +— z<y inP

This partial order is said to be induced from P. By a subposet of P, we
mean a subset of P, together with the partial order induced from P. Pick any
z,y € P such that z < y. By the interval [z,y], we mean the subposet

[z,y] == {z]z € P,z < z <y}

of P.

Let P denote any poset, and pick any z,y € P. By a lower bound for
z,y, we mean an element 2 € P such that z < z and z < y. Suppose the
subposet of lower bounds for z, y has a unique maximal element. In this case
we denote this maximal element by z A y, and say = A y ezists. The element
z Ay is known as the meet of r and y. P is said to be (meet) semi-lattice
whenever P is nonempty, and z Ay exists for all z,y € P. A semi-lattice has
a 0. Suppose P is a semi-lattice, and pick z,y € P. By an upper bound for =
and y, we mean an element z € P such that z > z and z > y. Observe that
the subset of upper bounds for z and y is closed under A; in particular, it
has a unique minimal element iff it is non-empty. In this case we denote this
minimal element by z V y, and say that  V y ezists. The element z V y is
known as the join of z and y.

Suppose P is a semi-lattice. Then P is said to be atomic whenever each
element of P is a join of atoms. Observe if P is a ranked atomic semi-lattice,

then
[0, z] N Pi| > rank(z) (2.1)

forall z € P.



Let g be a positive integer. The Gaussian binomial coefficients with basis
q is defined by

Y% itg=1,

o
| T Y i .
vl "¢ ifg#1.

. . N\ .
In the case ¢ = 1, for convenience, we write (z) instead of B[:l . Now
1
assume q = 1, or a prime power. Set

L,(N) = all subsets of {1,2,--- ,N} ifg=1,
K subspaces of GF(q)V if ¢ is a prime power,

where GF(q) is the finite field of g elements. Let P = L,(/N) be a poset with
the usual set inclusion order. Note that

{N]qzlm.

1

3 Construct Error Tolerable d—disjunct Ma-
trices

Let P be a poset. For any w € P, define
wt = {y > wly € P}.

A pooling space is a ranked semi-lattice P such that w* is atomic for all
w € P. Note that this definition is equivalent to that a pooling space is a
ranked semi-lattice with each interval being atomic. It is also clear that a
pooling space is atomic. If P is a pooling space, then so is w* for any w € P.
We show how to construct d—disjunct matrices from a pooling space in this
section.



Theorem 3.1. Let P be a pooling space with rank D > 2. Fiz an element
z € Pp and fiz an integer ¢ (1 < ¢ < D). Let T C Pp be a subset such that
|T| < ¢ and x ¢ T. Then the following (i)- (1) hold.

(i) There exists an element y € [0,z] N P, such that y £ z for all z € T.

(it) For any integer £ (€ < { < D), there are at least f .y + 1 elements
w € [0,2] N Py such that w £ z for all z € T, where

fore = |U[y,x]ﬂPy|—1 (3.1)
with the union taking from all y in (i).

(iii) For any integer £ (£ < € < D), there are at least e pp + 1 elements
w € [0,z] N Py such that w £ z for all z € T, where

e,y = max|ly,z] N Py| -1 (3.2)
with the mazimum taking from all y in (i).

Proof. (i) We prove (i) by induction on D. When D = 2, we can assume ¢ = 1
and |T| = 1, otherwise the theorem clearly holds. Suppose T' = {z}. Then
the meet z A z € Py U P;. Hence |[0,z] N [0,z]N P | = [[0,z Az]NP| < 1.
Observe that |[0,z] N P;| > 2 by (??). Thus we can pick an element y €
([0,z] N Py) \ [0, z]. This proves the case D = 2.

In general, pick an element z € T. Then z # z. Since [0, z| is atomic
and since [0,z A z] is proper contained in [0, z], we can pick an atom w €
[0, 2]\ [0,z A z]. Observe that w £ z. Hence TNw* has < £ — 1 elements. In
the pooling space w™, the element z and the elements of T'N w™ have rank
D — 1, and the elements of w* N P, have rank £ — 1. Hence by induction, we
can choose y € [w,z] N P, such that y € u for all w € T Nw*. Note that
clearly y € u for all w € T'\ w*. This proves (i).

(ii) This is immediate from (i).
(iii) This is clear from (ii). O
Note fhat the properties of a pooling space is preserved by truncation.
That is if P is a pooling space with rank D, then
PbUPU---UPF

is a pooling space of rank k for each £ (0 < k < D). The following corollary
is immediate from above Theorem.



Corollary 3.2. Let P be a pooling space with rank D. Fixz integers d, k
(1<d<k<D) Lt M = M(D, k,d) be a 01— matriz whose rows (resp.
columns) are indezed by Py (resp. Py) such that My, =1 iff x <y. Then

(i) M = M(D,k,d) is a d—disjunct matriz.

(i) For each integer d (1 < d < d), M is a d —disjunct matriz which
detects f errors and corrects |_=2£J errors, where referring to (7?),

f=min fyrq—1
with the minimum taking from allz € Pp, T C Pp andz ¢ T.

(iii) For each integer d (1 < d < d), M is a d —disjunct matriz which

detects e errors and corrects | §| errors, where referring to (7?),

e =min e;pqg — 1
with the minimum taking from allx € Pp, T C Pp and z ¢ T.

Proof. Since the truncation of a pooling space is a pooling space, we can
assume k = D.

(i) This is clear from the definition and Theorem ?7?(i) with d = .

(ii) Suppose S,T C Py are distinct subsets with |S|, |T| < d. Then at
least one of them is nonempty, so assume S # @. Pick z € S. Applying
Theorem ?7(ii) with d = ¢ and d = ¢, we find there are at least forq +
1 rows of M which have value 1 in the column z and the value 0 in all
columns indexed by T. Hence the test result of S and the test result of T
have Hamming distance at least f,rq + 1. This proves (ii).

(iii) This is immediate from (ii) with the observation e < f. a

4 Examples

In this section, we give some examples of pooling spaces P with rank D. All
of these examples are called the quantum matroids with the base g [9], where
q is 1 or a prime power. The number |P;| can be computed from results given
in [9). We suppress the details of the computing. For integers 1 <d <k < D,
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the examples produce the d-disjunct matrices M = M (D, k, d) have size t xn,
where t = |Py| and n = |P|. For each d (1 < d < d), M is a d —disjunct
matrix which detects e errors and corrects | £] errors, where

k—d’J
e = — 1.
[d—c{q

The weight of each column of M is

o,

and the weight of each row of M is

1. The Hamming matroid H(D,N) (2 < N) [2], [8].

Set
A=A UAU---UAp (disjoint union),

where
Al=N (1<i<D).

P={z|zCA|rNA| <1 for all i+ (1<i< D)},
z < y whenever z is a subset of y (z,y € P),

rank(z) = |z| (z € P),

mI= (D)

2. The attenuated space A,(D,N) (D < N) [2], [3].

Let V denote a vector space of dimension N over the field GF(q), and
fix a subspace w C V of dimension N — D.

P ={z |z is asubspace of V, zNw =0},
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z < y whenever z is a subspace of y (z,y € P),

rank(z) = dim(z) (z € P),

D] .
I — i(N-D)
| Pyl [iLq :

3. The classical polar spaces of rank D over GF(q) [1].

Let V denote a vector space over the field GF(q), and assume V pos-
sesses a given non-degenerate form. We call a subspace of V' isotropic
whenever the form vanishes completely on that subspace. The maximal
isotropic subspaces have the same dimension, denoted by D.

P = {z | x is an isotropic subspace of V'},
r < y whenever z is a subspace of y (x,y € P),

rank(z) = dim(z) (z € P),

name dimV form ||
Bp(qg) 2D+1 quadratic ? (1+¢2)(1 +gP~1) - (14 gPH+)
Y
Cp(q) 2D alternating ? (1+¢P)(1 4¢P~ (1 4¢Pt
K
Dolg) 2D (W&ltliigﬁcp) F? S " (A +¢P7) (1477
"Don@) 2D+2 (it ? (L+¢7 A+ (14477

-q

Hermit; D] B

2A,p(r) 2D +1 (Zrillréz)m ; (14 gP+3)(1 + gD 5) - (1 + gP—+)
" dg

Hermitian D] 1 s ot

“Aep-i(r) 2D (qriurz) J| AP+ ¢PE) (147
" dg




5 Pooling Polynomials

Let P be a pooling space with rank D. The ratio '—%—' is the main concerned of
the construction of pooling designs, and the structure of P is less important.
With this motivation, we give the following definition.

Definition 5.1. Let P be a pooling space with rank D. The pooling polyno-
mial of P is

D
f(P):=>_|Pla'.
1=0

Note that the constant term of a pooling polynomial is always 1. With
lexicographical order, 1 and 1 + x are the first two pooling polynomials.

Let P', P be pooling spaces with rank D', D" respectively. We define
the direct sum P’ + P" of P' and P" in the following. The element set of
P’ + P" is the disjoint union of elemnets of P’ and P” except the 0 of P' and
the 0 of P” are identical. Hence P' + P" has |P’| 4+ |P"| — 1 elements. The
partial order of P’ + P” is naturally inherited from P" and P". It is easy to
see P' 4+ P" is a pooling space with rank max{D’, D"}. We define the product
P'® P" of P' and P in the following. The element set of P' @ P" is

{(ab)|ac P be P},
The partial order in P' @ P" is defined by
(a,b) < (c,d) iff a<candb<d,

for any a,c € P’ and any b,d € P". It is easy to see that for any a,c € P
and b,d € P", the following (i)-(iii) hold.

(i) rank((a,b)) = rank(a) + rank(b);
(i) (a,b) A (c,d) =(aAc,bAd);
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(iii) (a,b) is the join of (a;,0),---,(ar,0),(0,b1),---,(0,bs), where a;, b;
are atoms that satisfya =a; V---Va, and b=b, V---V by;

(iv) [(a,b), (c,d)] = (a,c) ®(b,d) in P @ P".

We conclude from (i)-(iv) above that P' ® P" is a pooling space with rank

DI + DII'

Note that if P is a pooling space then so is P\w™* for any w € P. Let f be
a pooling polynomial. By a reduction of f, we mean a polynomial obtained
by replacing the leading coefficient of f with a smaller nonnegative integer.
We immediately have the following theorem.

Theorem 5.2. Let F be the set of pooling polynomials. Suppose fi(x), fo(z) €
F. Then the following (i)-(iii) hold.

(i) A reduction of fi(z) is in F;
(i) fi(z) + f2(z) — 1 € F;
(i) fi(z)fa(z) € F.
Example. (1 + 3z + 2z?)™ is a pooling polynomial, since it can be obtained

from the pooling polynomial 1 + = by using productions and reductions as
shown in the equation

(1437 +22%)™ = (((1 + 2)* — 2°) — 2™

6 Concluding Remarks

We construct d—disjunct matrices from a pooling space in Section ?7. If we
view these d—disjunct matrices as (d — 1)—disjunct matrices, they are proved
to be e—error-detecting for some integer e. Some examples of pooling spaces
are given in Section ??7. By checking these examples, the ratio % = f—';:—l

is small and the error-tolerance number e is large if d,k are well chosen.
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However it seems d is too small compared to n in all these examples. We
show how to construct a new pooling space from given ones in Section 77.
This can be used to obtain a pooling space with a desired |P;| ranges.

Of course, our list of pooling spaces is not exhausted. It can be expected
that there are a lot of unknown ones and a complete list of them is unlikely
to be completed. We give another class to show this line of study might have
number theory involved. Fix a positive integer m, and set

P ={i|2<i<m, and i is an integer which contains no square factors}.
The partial order in P is defined by
1< ift 1 divides j.

By identifying an element in P with a subset of primes, the poset P can be
obtained from the infinite poset consisting all the subsets of primes and then
deleting each subposet w™ for each integer w > m (in natural integers order-
ing). It can be easily checked directly that P is a pooling space. However
the computing of |P;| is not likely to be written as a nice formula of ¢ and
m.

A class of pooling space related to the Hermitian forms graphs are con-
structed in [10]. All of the examples we mentioned in this paper are obtained
by some other mathematical objects. To close the paper, we ask if there is
an algorithm to construct the pooling spaces directly. More precisely, try to
construct a pooling space according to a given pooling polynomial if it exists.

Acknowledgements The authors would like to thank Frank Hwang for
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