ARM

v L]
NSC90 2213 E 009 135
90 8 1 91 7 31

OO0 o0

91 10 20

ARM

Design of Low Power Busesin ARM Embedded Systems
NSC90 2213 E 009 135

90 8

50% ~ 80%

(basic-block)

91.2%

83.6%

1 919 7 31

ARM

Abstract

The requirement in reducing the power
of a processor has grown dramatically over
the past few years. Researches have shown
that 50%~80% power are dissipated on the
transmission between CPU and Memory.
Power consumed on buses is decided by
numbers of bit toggles on the buses. In this
project, we focus on instructions transmitted
on buses to reduce the numbers of bit toggles
at ingruction buses.

In this project, we propose a basic-block
instruction dictionary to reduce power
consumption on instruction bus.
Basic-block is one of the characteristics of
program execution behavior that once a
processor step into a basic-block, the whole
block will be executed except that interrupt
occurs. We place the most frequently used
basic-blocks into the instruction dictionary,
which has smaller power consumption and is
closer to CPU. Then, these basic-blocks at
original programs are replaced by codewords
indexing to the corresponding basic-blocks in
the dictionary. Thus, we can reduce the
power consumption when repeatedly
executing on these basic-blocks because only
the codewords are transferred in the
instruction bus. A codeword lookaside
buffer is aso applied to provide more power
reduction when accessing codeword
repeatedly.

Experimental results show that on
average 91.2% power reduction can be
achieved with comparing to the base system.
By accessing instructions in the interna
dictionary, we can aso reduce the execution
time by 83.6%.

Keywords ARM processor, embedded
system, low power, bus, bit toggle

For embedded systems, the major power
dissipations of embedded systems come from
the global communication on external buses.
Many embedded systems are designed for
multimedia and signd processing
applications such as PDA (Personal Digital
Assistants) and cellular phones. In such
systems that involve multidimensionad
streams of signals such as images, video or
voice sequences, it has been shown that the
majority of the area and power cost is not due
to the datapath or the controllers, but due to
the global communication and memory
interaction.

In fact, 50% to 80% of the power cost in
application-specific integrated circuits (ASIC)
for rea-time signa processing is due to
memory traffic caused by the ASIC and the
off-chip memories. It is because that the
off-chip capacitances are three orders of
magnitude larger than the typical on-chip
capacitances. This implies that design
techniques leading to decrease the power
dissipation in this part will make a significant
impact on the overall power dissipation of
the gpplication.

In this project, we design some power
reduction techniques to reduce the runtime
power dissipated on the system buses. We
focus on the instruction bus and the related
address bus to exploit the repetitions of
instructions for reducing power dissipations
on the buses. To prevent the repeated
instructions from transmitting on the buses, a
pre-selected basic-block-based dictionary is
applied. This basic-block dictionary is
working as internal memory nearby the
processor core. It includes codeword decoder
and basic-block storages which works
somewhat like an instruction cache but is
demanded for lower power.

3.1 Architecture Modd

Our basdine architecture model is

shown in Figure 1 In this baseline system,
processor sends address request and receives
instructions from main memory directly. We
find that repeatedly executed instructions will
continuously drive the same bus transactions
and consume power.

Off-chip drivers.

i ES' 4 & 1_ F‘Qmﬂl"r’
I Frocessor. | ISR !
[

.-'
L=
Core. lr_u'
I m,‘

| — Address |

Figure 1. Architecture model of basdline
system

Figure 2 is our design model. In this
model, we add a hardware mechanism, called
basic-block dictionary, between the processor
and the memory. Our design is focused on
the instruction bus and the related address
bus to exploit the repetitions of instructions
for reducing power dissipations on buses.
Transactions on these buses are influenced
by program execution behaviors. Instructions
are transmitted on buses repeatedly and are
grouped by basic blocks. To prevent
repeatedly instructions and address requests
from transmitting on buses, we design a basic
block dictionary. The basic block dictionary
works as an intermediate between processor
and main memory. It receives address
requests from processor and returns
instructions from main memory or its own
ingtruction table.

s | Memory

i

AsI /f

Frocessor

Cora

Figure 2. Architecture mode of our design

3.2 Basic Block Dictionary

In our design, the basic-block dictionary
is used to store the most frequently used
basic-blocks and works like a read-only
memory (ROM). The procedure for this
power reduction method is divided into two
phases. basic-block dictionary building
phase and dictionary accessing phase. The

phase of basic-block dictionary building is
responsible for choosing the frequently used
basic-blocks into dictionary to lower the
numbers of bit toggles on buses. This phase
is processed at software offline. The
dictionary accessing phase includes decoding
control logic to control the operations of
fetching the codewords of dictionary entry
and convert codewords into origina
ingructions.

3.2.1 Basic-block Dictionary Building
Algorithm

Our building agorithm is applied to
analyze program-execution behavior by
calculating the number of bit toggles and
execution count of each basic block. The key
idea of the agorithm is to select the most
frequently executed basic blocks to be added
into the dictionary. The algorithm is divided
into three parts asfollows:

1. Choosing basic-blocks for the dictionary,

2. Replacing basic blocks with codewords
for a program, and

3. Modifying branch targets in the coded
program.

After al dictionary entries are chosen, we

need to encode the original program by

replacing each basic block that aready in

dictionary with its mapping index, called

codeword.

One obvious side effect of the
basic-block dictionary scheme is that it alters
the locations of instructions in the program.
This presents a special problem for branch
instructions since branch targets are changed
as aresult of program compression. To avoid
this problem, the targets of branch
instructions are patched to the new locatiors
in the coded program.

3.2.2 Dictionary accessing Phase

The hardware mechanism of dictionary
accessing phase consists of two main
modules: basic-block dictionary and
decoding hardware. An additional mask can
be place a the control circuits in memory
side to gain more benefit in transmitting
codewords.

The block diagram of the proposed,
basic-block dictionary is shown in Figure 3

The blocks inside the dotted line is our
designed circuits, the decoding-control logic,
that contain the basic-block dictionary and
the decoding-control logic. The
decoding-control logic is further divided into
instruction fetcher, codeword detector,
boundary detector and address synchronized
unit. This hardware mechanism may be
combined with the processor core into a
gngle chip.

et o Feebohen

"l “I T 5 Memory

-
| ot Dict Codowond |

m ki1 Castetn '

1l st Dt kb £ (Lol
| 4 Mode

-

CPU Core
Diriginal
Instructions:

Figure 3. Systerh architecturewith
basic-block dictionary

The basic-block dictionary stores the
basic blocks selected by the basic-block
dictionary building agorithm. It is like a
read-only memory and each elementa line
has 32-hit ingtruction and one boundary bit.

The decoding-control logic is
responsible for sending instruction to
processor from memory or dictionary. It first
fetches instructions from memory and then
determines if the fetched instruction is a
codeword. If the fetched instruction is a
codeword, the original instructions will be
gathered from dictionary. It is also designed
to check if the dictionary entry is finished
and to synchronize the address between
processor and memory.

Based on the design of the basic-block
dictionary, the power consumption can be
further reduced by attaching a Codeword
Lookaside Buffer (CLB). When a program is
executed, the processor may often execute
some sequences of instructions repeatedly.
These sequences of instructions are known as
loops. A loop contains either one or more
basic blocks. The mapping relation is stored
when a codeword is fetched and decoded
with the CLB, we may eliminate some bus
transaction for the codewords whose
addresses have already been recorded in the

buffer.

The CLB is not available when the
processor is in dictionary mode. It becomes
available when the processor is out from the
dictionary mode and the next
program-counter address is sent to the
decoding-control logic. The decoding-control
logic will query this buffer to find if this
address is dready in CLB. If yes, the PC
address points to a codeword in the external
memory and we may use Dictionary Index
fidd in buffer to index the dictionary.
Otherwise, we dtill need to fetch this
ingruction from memory.

3.3 Simulation Resultsand Analysis

We adapt the MediaBench consisting of
well-known multimedia and communication
applications for our benchmark. The input
data we used for this benchmark suite are the
recommended input data included in the
MediaBench.

Fawer Comsumpien of Swtaxn rrtk Basic-Black Dicbonacy
07
i B Dt wifa CLE
B0 W/ 1CLE
ﬁ = Ol 2CLE
04
Owi 4 CLE
g .
2 By 3 CLE
E = Bwi 160LE
a4 W/ 52 0L
i ;
A5E IR IK 4% 8RR uE |Ow/GCLE
Dl B W w15 CLE

Figure 4. Power concumption

Ezecuticn Tine of Svetem mith Basic-Block Dictictmor

=
T

—=—who ClB
= w'lCLE
w— 9l ECLE
wi 4 CLE
B ——wlEOLE
—— ! I6CLE
— {22 CLB
— wid CLE
= w!12ECLE

F=
-

bl

=
. (-3

Ploemalee i the For e Sysimn
=

(=3

Figure5. Execution time

The power consumption and execution
time of a system with different size of
basic-block dictionary and CLB are shown in
Figure 4 and 5, respectively. A 2K byte
dictionary with 64-entry codeword lookaside
buffer achieves best power reduction as

much as 91.2%. Moreover, it may achieve
83.6% of execution time saving for the
2-Kbyte dictionary with 64-entry CLB.

In this project, we have examined a
basc-block dictionary to reduce power
consumption on instruction bus and related
address bus. A codeword lookaside buffer is
also proposed to work with the dictionary to
reduce more power consumption. The key
idea of our method is to apply a dictionary
which stores frequently executed basic
blocks to make use of the repetitions of basic
blocks a program execution time for
reducing bit toggles on ingruction bus.

[1] Wen-Tsong Shiue and Chaitali
Chakrabarti, “Memory design and
exploration for low power embedded
systems,” Signal Processing Systems,
1999. SIPS 99. 1999 IEEE Workshop on,
Page(s): 281 —290, 1999

[2] Benini, L.; Macii, A.; Macii, E.; Poncino,
M., “Selective instruction compression
for memory energy reduction in
embedded systems’, Low Power
Electronics and Design, 1999.
Proceedings, Page(s): 206 -211. 1999
International Symposium on, 1999,

[3] Lea Hwang Lee; Moyer, B.; Arends, J.,
“Instruction fetch energy reduction
usng loop caches for embedded
applications with small tight loops,”
Low Power Electronics and Design, 1999.
Proceedings, Page(s): 267 —269. 1999
Internationd Symposium on, 1999

[4] C. Lee, M. Potkonjak, and W. H.
M.-Smith, “MediaBench: A Tool for

Evaluating and Synthesizing
Multimedia and Communications
Systems”, 30" Annua ACM/IEEE
International Symposium on

Microarchitecture, 1997.

[5] Wilton, SJ.E.; Jouppi, N.P. “CACTI: an
enhanced cache access and cycle time
model,” Solid-State Circuits, |EEE
Journal of , Volume: 31 Issue: 5, Page(s):
677 —688, May 1996

