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Abstract

The results of Wilks (1938) had three
drawbacks. First of all, the likelihood
function has to be smoothed enough in order
to admit a Taylor's expansion. Secondly,
the MLE has to be asymptotically normal and
this itself relies on Taylor's expansions and
the central limit theorem. Thirdly,
assumptions on the independence of
observations are typically made. We contend
that much ssimpler fundamental insight to the
Wilks theorem is available: if the contour set
of the likelihood function around the MLE
are of fan shape, then the Wilks type of
results hold. The classica Wilks theorem
corresponds to the situations where the
contour set is elipsoid. In genera, the
asymptotic normality of the MLE is not
required, neither does the asymptotic
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distribution of the MLE have to exist. We
constructed an example where the MLE is
not asymptotically normal, but Wilks' type of
results hold.

We obtain more general results by using
Bayesian approach and considering the
likelihood contour sets being fan-shaped.
This provides an insightful geometric
understanding and a useful extension of the
likelihood ratio theory. As a result, even if
the MLEs are not asymptotically normal, the
likelihood ratio statistics can still  be
asymptotically Chi-squared-distributed. In
this sense, the traditional wilks theorem is a
gpecial case of our generalized results.
Further, we demonstrate that the limiting
distributions of the log-likelihood ratio
statistics are, in general, gamma distributions.
We believe that this important result will be
widely used by statisticians.

Keywords: likelihood function, Taylor's
expansion, MLE, asymptotically
normal, Bayesian approach,
Chi-squared-distributed, gamma
distributions.
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One of the most celebrated folk
theorems in statistics is that twice the
logarithm of a maximum likelihood ratio
statistic is asymptotically chi-distributed.
This result is due to Wilks (1938) and is
proved via Taylor's expansions of likelihood
functions and by assuming that the maximum
likelihood estimator (MLE) is asymptotically
normal. Seealso Wald (1941), Wilks (1962)
and heuristics given in the popular textbooks
such as Cox and Hinkley (1974), Kendall and



Stuart (1979), among others. While this
understanding is insightful, it has three
drawbacks.  First of all, the likelihood
function has to be smoothed enough in order
to admit a Taylor's expansion. Secondly,
the MLE has to be asymptotically normal and
this itself relies on Taylor's expansions and
the central limit theorem. Thirdly,
assumptions on the independence of
observations are typically made. Technical
proofs of the first two steps above are by no
mean simple. This is probably why
rigorous statements and heuristic proofs are
suppressed in many popular graduate
textbooks. See for example page 229 of
Bickel and Doksum (1977), page 486 of
Lehmann (1986) and page 381 of Casellaand
Berger (1990).

We contend that much simpler
fundamental insight to the Wilks theorem is
available: if the contour set of the likelihood
function around the MLE are of fan shape,
then the Wilks type of results hold. The
classical Wilks theorem corresponds to the
situations where the contour set is elipsoid.
In general, the asymptotic normality of the
MLE is not required, neither does the
asymptotic distribution of the MLE have to
exist. One can easily construct an example
where the MLE is not asymptotically normal,
but Wilks' type of results hold. An additional
benefit is that our technical proof is ssimple

and can be understood without much
probability background.
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In the project we derived the

asympototic posterior distribution of
the log-likelihood ratio statistic
which is of gamma type distribution. By
using the asymptotic  posterior
distribution of the log-likelihood
ratio statistic, we obtained the
asymptotic frequentist distribution of
log-1likelihood ratio statistic.
Therefore, all the results we obtained
up tonow are based on 1 arge sample size.
We apply the same method to the cases
of small sample size. That is, we use

the posterior distribution of
log-likelihood ratio statistic to
estimate the frequeist distribution of
the log-likelihood ratio statistic.

In the derivation of the asymptotic
distribution of log-likelihood ratio
statistic, we only require the prior to
be a nonnegative function, and all the
nonnegative priors will result the same

asymptotic distribution of
log-likelihood ratio statistic.
However, in the finite sample cases,

the choice prior distribution becomes

very 1mportant, the posterior
distribution of log-likelihood ratio
statistic are effected by the choice

of the prior distribution. From Welch
(1963), we know that, in regular models,
1f we use the square root of Fish
information as prior, then the
confidence interval obtained from the
posterior distribution has the right
converage probability up to the second

order. Therefore, we adapt the prior
proposed by Hung and Wang (1996) which

1s an extension of the square root of

Fisher information to the non-regular
models.

In the finite sample problem, first, we
try to see how the gamma distributions
approximate the true distribution.
Secondly, from we see that, even in the
irregular models, the asymptotic
distribution of log-likelihood ratio
statistic 1S of gamma type
distributions with scale parameter
equal to 1. Therefore, we try to
approximate the posterior distribution
by a gamma type distribution with scale
parameter equal to 1. For finding this
approximation, when parameter 1is of
one-dimension, we observe the behavior
of estimator of parameter around some
neighborhood of the true parameter. The



condition about the 1ikelihood contour
set being of fan-shaped can be reduced
to that the value of error is
proportional to (2w) r. Therefore, for
fixed estimate of parameter, the slope
of the curve of log 2w agains t log error
1s r. The detail procedure is in ,my

paper. In the first example, the
maximum likelihood estimator 1is the
smallest order statistic and 1its
asymptotic distribution 1S an
exponential distribution which is not
a normal distribution. For six

different sample sizes, we use the
method mentioned above to estimate the
parameter r. We observed that the slope
of log 2W against log error is always
equal 1 for any sample sizes. Then draw
three curves on the same plot. The
nonsmooth one 1s the empirical
distribution of log 2W. The solid one
1s the distribution function of gamma.

And the non-solid one 1s the gamma
approximation function for the true
distribution. We see that these three
curves are very close even when the
sample size is small. It demonstrates
that even for small sample sizes, the
distribution of 2W is a true gamma type

distribution and our technique used to
estimate the parameter r works well.

For another example, the first
derivative of the likelihood function
relatived to parameter does not exist.
For twelve different sample sizes, we
estimate the slope of log 2Wagainst log
error. While the sample size 1sone, the
Estimator is 1. Also, we observed that
The slope increases as the sample size

increases. When the sample size 1is
large enough, slope is close to 2. Then

draw three curves, that 1is, the
empirical distribution, the

distribution of gamma, and the gamma
approximation function. The plot also

demonstrates, for any kind of sample
sizes, the distribution of 2W is close
to a gamma type distribution and our
technique works well. We noticed that
in this example, the distribution of
log-likelihood ratio statistic changes
from gamma distribution of degree 1 to
degree 2 as sample size changes fromone
to infinity.

Finally, consider the last example,
the maximum likelihood estimator
statistic i1s again not asymptotically
normal-distributed. For twelve sample
sizes, we estimate the slope of log 2W
against log error. While the sample
size 1s equal 1, the estimator slope
equal 2. We observed that slope
decreases as the sample size increases.
[f the sample size is large enough
slope 1s close to 1. Then draw three
curves on the same plot as which we done
before. In the n=2 case, the result is
not as well as other cases, but does not
go much far wrong. We noticed that in
this example, the distribution of
log-likelihood ratio statistic changes
from gamma distribution of degree 2 to
degree 1 as sample size changes from one
to infinity.

In this project, even the Taylor’ s
expansion of the likelihood function do
not exist or the asymptotic
distribution of the maximum likelihood
estimator is not anormal distribution,

our method still work well. The key
point 1s that the likelihood contour
setsare of fan-shaped. And, therefore,

the log-likelihood ratio statistic

1s asymptotically gamma-distributed.
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