
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※　　　　　　　　　　　　　　　　　　　　　　　※
※ 具資料流引擎之 x86 微處理機設計 　　 ※
※　　　　　　　　　　　　　　　　　　　　　　　※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：ˇ個別型計畫　　□整合型計畫

計畫編號：NSC89－2213－E－009－066

執行期間：　88年 8月 1日至　89年 7月 31日

計畫主持人：單智君 博士

共同主持人：鍾崇斌 博士

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中　華　民　國　　89年　　10月　　25日

2

具資料流引擎之 x86 微處理機設計
Design of an x86 microprocessor with data-flow engine

計畫編號：NSC89-2213-E-009-066
執行期限：88 年 8 月 1 日~89 年 7 月 31 日
主持人：單智君 博士
共同主持人：鍾崇斌 博士
計畫參與人員：邱日清、徐日明、陳志龍、林育得
E-MAIL ：jjshann@csie.nctu.edu.tw

一、中文摘要
 本計畫的目標在於完成具資料流引擎
之 x86 微處理器（DF86）結構設計相關問
題的研究與探討。X86 指令集的格式、語
意及定址模式都非常複雜。X86 微處理器
發展至目前的超純量架構，以種種特殊的
設計來解決這些問題；但是指令擷取和資
料相依性檢查的頻寬，還是無法配合上指
令自然的平行度和多重執行單元的運算能
力，而成為效率的瓶頸。依指令自然的平
行度執行是資料流計算機結構的特性，本
計畫將資料流（data-flow）架構引入 x86
微處理機中的構想，稱之為 DF86 結構。
將資料流圖建立、儲存於微處理器內，以
重複使用來解決這些瓶頸。整個架構的設
計重點包括前端解碼、資料流引擎、及資
料存取等三部份。其中前端解碼部份的研
究主題包括：建立 data-flow graph 的方
法、control flow 與 data flow 的切換、
及將控制相依性轉為資料相依性的方法。
資料流引擎部份的研究主題包括：data-
flow graph 的暫存方法與空間管理、
data-flow graph 的使用與維護。至於資
料存取部份則在提出適合資料流特色的高
頻寬資料存取機構。
 DF86 結構是結合 Control flow 與
Data flow 的計算方法。將可使得需依靠
高指令擷取度來提高效率的超純量方式，
因加入內存資料流圖的計算結構，而降低
指令擷取寬度，並達成指令自然的平行度
執行，使得計算效能獲得充分提昇。
我們針對此機制中的參數進行模擬並
選定合理值，然後用此設定值跟其他微處
理器的派發率作比較。模擬結果顯示我們
的機制的效能的確比其他微處理器高。在

硬體花費/效能的考量下，我們的機制平均
每個週期可以派發二‧０七個 X86 指令。

關鍵詞：x86 指令集、微處理機、資料流
架構、超純量架構、資料流圖、高頻寬資
料存取

Abstract

The objective of this project is to
study and design an x86 microprocessor
with data-flow engine – DF86. We will
design the micro-architecture of the
microprocessor using a data-flow kernel,
and verify the design by simulation and
emulation. The instruction formats,
semantics and addressing modes of the x86
instruction set are extremely complex. When
the x86 microprocessors progress to become
superscalar, many complex designs are
added to resolve these bottlenecks. However,
the bandwidths of instruction fetch and
dependence check are still too small to
exploit the inherent parallelism of programs
and to match high execution rate of multiple
execution units. In this project, we solve
these bottlenecks by building a data-flow
engine, saving the data-flow graph in the
processor, and reuse the graph. The micro-
architecture can be partitioned to three parts:
front-end decoder, data-flow engine, and
data access. The research topics include:
building, storing and maintaining the data-
flow graph, switching between control flow
and data flow, transferring control
dependence to become data dependence and
providing high-bandwidth data access.

We do the simulation to decide the
parameters of our mechanism and compare
the issue rate of our mechanism to that of

3

other microprocessors. Simulation results
show that the performance of our
mechanism is better than that of other
microprocessors. Under performance/cost
consideration, our mechanism can issue 2.07
X86 instructions per cycle.

Keywords：x86 Instruction Set,
Microprocessor, Data-flow, Superscalar,
Data-flow Graph, High-bandwidth Data
Access.

二、緣由與目的

Researchers have discussed the use of
ILP (instruction-level parallelism) to
accelerate performance for more than 20
years. In order to achieve high ILP, many
kinds of microprocessors have been
proposed, such as VLIW, superscalar and
pipeline processors. However, the complex
X86 instruction set makes it hard to improve
the performance of X86 processors. For
examples, checking instruction boundary
limits the exploitation of the ILP of
superscalar processors, and increases
hardware cost. Complex instruction
semantics makes it necessary to translate
X86 instructions to RISC-like instructions,
and increases the burden of data dependence
checking. Besides, the complex addressing
modes make it hard to raise the clock rate
due to inefficient pipeline stage design. Even
the first Intel IA-64 processor, Merced [2],
translates X86 instructions to VLIW
instructions by a special hardware. However,
the clock rate of Merced is low because
Merced increases the stage delay due to
more hardware complexity. Subsequently,
Intel publicizes second IA-64 processor—
Itanium — to translate X86 instructions to
VLIW instructions by the compiler since
Merced wastes much time to do instruction
translation. But this processor needs
excellent compiler and recompiles all
original applications. It is inconvenient for
users to do it.

The conceptions of Tomasulo’s
algorithm and scoreboarding were applied to
implement the mechanism of out-of-order

execution in early 1960. These conceptions
were used in high performance computer
architectures, and were the pioneers of data-
driven computation. Although out-of-order
execution is only implemented in function
units, the performance it enhances is good.
This application is very suitable in the
computer architectures of traditional von
Neumann machines. Because of the demand
of large and native ILP, the design of data-
driven computer should be constructed
based on the execution with data flow
graphs.

三、結果與討論

3.1 The DF86 Microarchitecture

By the data-driven concepts, the
microarchitecture is designed following
three directions, which are the Loop
Unrolling, the Macro-Node Function, and
the Data Superscaling. This architecture is
named as the DF86 architecture. Figure 1 is
used to illustrate the DF86 architecture.

Front-end

Memory Organization

Cache

Decoder

Data Flow Engine

Data Prepare Unit

LSU AGUBU ALU

BP

Data Memory

RF

Data Buffer

Front-end

Memory Organization

Cache

Decoder

Data Flow Engine

Data Prepare Unit

LSU AGUBU ALU

BP

Data Memory

RF

Data Buffer

Figure 1. The DF86 Architecture

The Front-end unit is an instruction
fetch unit that supports the execution traces
as the traditional control flow. The Decoder
decodes an instruction to an operator node
and token-like data that represent the source
and destination operands of an instruction.
The Data-flow Engine maintains data-flow
graphs and firing rules. The Data Buffer

4

manages the data accesses with the Data
Memory. The Register File (RF) is used to
construct a register token. The Data Prepare
Unit combines the operator node and the
ready data that the operator node needs to
form an executable instruction. Then we
send the executable instruction to the ALU
for execution.
 The Loop Unrolling is based on the
dynamic loop semantic analysis to build the
data tag. By the data driven computation
method and the data superscalar mechanism,
the operators of loop match their partner in
data flow engine to make massive parallel
processing. Following the dynamic semantic
analysis, the function call is handled as the
methods of macro node in the data flow
computer. The Macro-Node Function
method is alternative with traditional
function invoking methods. With the
dependence relations, between caller‘s
parameter and callee’s arguments, and
between return values and results, the inter-
function data transfer mechanism can be
reduced to speedup function-invoked time.
The data superscalar can pump data from
memory to support structure data processing,
which can be analyzed by the dynamic
semantic analysis. The pumping data unit
can fetch multiple data from a set of data
lines and tag them for partner metching to
achieve massive parallel instruction
execution.

3.2 The Loop Unrolling Architecture

When the Loop Semantic Analyzer
detects a loop, it will send the parameters of
requested data to the Pumping-Data Unit
and set up loop unrolling environment at the
Match Unit. Once the data enters the Match
Unit in parallel and is matched with its
partner, we will put the corresponding
instructions of the data flow graph to data
prepare unit to wait for execution. Then the
functional unit will send the result data back
to the pumping-data unit via Register File, in
order to continuously precede the operations
that are dependent with the result data.
Figure 2 is used to illustrate the Loop

Unrolling architecture.

Match
Unit

Data Prepare Unit

Instruction
Stream

Pumping-Data
Unit Loop

Data-Flow
Graph

Loop Semantic
Analyzer instruction

node

opcodes

executable
packets

result
tokens

data port
request

tokens

data set
request

RF
Data
Buffer

Data Flow Engine

To Function Units

Match
Unit

Data Prepare Unit

Instruction
Stream

Pumping-Data
Unit Loop

Data-Flow
Graph

Loop Semantic
Analyzer instruction

node

opcodes

executable
packets

result
tokens

data port
request

tokens

data set
request

RF
Data
Buffer

Data Flow Engine

To Function Units

Figure 2. The Loop Unrolling Architecture

3.3 The Macro-Node Function Architecture

Figure 3 is used to illustrate the macro-
node function architecture. The Function-
invoked Semantic Analyzer analyzes the
executed instruction streams and constructs
the dependence relations, between caller‘s
parameter and callee’s arguments, and
between return values and results. It
manages the data-flow graph frame for each
function and makes the function’s data
input/output descriptions. By the data driven
nature, the function can be invoked by data
dependences.

Function-invoked
Semantic Analyzer

Parameters Arguments
Return values Results

Macro Actor Dependence Unit

Parameters
Return values
Table

Data-
Tagged
Unit

Match
Unit

Function
Data-flow
Graph
Frame

Function Units

Instruction
Stream

Figure 3. The Macro-Node Function
Architecture

3.4. The Data Superscaling
The data superscalar can pump data

from memory to support structure data

5

access to achieve massive parallel
instruction execution. Figure 4 is used to
illustrate the pumping data architecture.

Address
Generation
Unit

Data Cache

D
ata C

ache
L

ine B
uffer

Data Access
Unit

Data
Pool

Data-
Tagged
Unit

Data Access Request

Figure 4. The pumping data architecture

3.5 Performance Analysis

We compare the issue rate of our
mechanism to that of other microprocessors.
The results are shown in Figure 5. In this
figure, we apply the semantic-based loop
unrolling mechanism to the two simulations,
noted as our choice and Ideal. In our choice,
we assume it has 7 issue degree, 3 unrolling
degree, 64-entry inst-queue, and 3 loop
frames within a function frame. On the other
hand, the Ideal means unlimited issue
degree, unlimited unrolling degree,
unlimited-entry inst-queue, and unlimited
loop frames within a function frame.

From this figure, we find that the
performance of Ideal is excellent and its
issue rate is 2.3 instructions per cycle.
Besides, the issue rate of our choice also
surpasses all other microprocessors and
achieve at 2.07 instructions per cycle.

0

0.5

1

1.5

2

2.5

Pentium Pentium
MMX

P6 series K5 series K6 series Our choice Ideal

in
st
ru
ct
io
ns
 /
pe
r c
yc
le

Figure 5 Issue rate comparisons.

四、計畫成果自評

 In this project, we have designed an
x86 architecture with a data-flow engine,
called the DF86 microarchitecture, construct
a simulator to evaluate the parameters of our
mechanisms, and have excellent results.
These show that the DF86 microarchitecture
is better than other current microprocessors’.
This project is fully matched with the
proposal requirements. In the future, we
will use the microarchitecture to solve
following problems: the precise interrupt,
the data structure handling, the data pipeline
execution structure, and the multiple
instruction analyzer. Finally, we will build a
prototype with the high-density FPGA
modules.

五、參考文獻

[1] B.R. Rau and J.A. Fisher, “Instruction-
Level Parallel Processing: History,
Overview and Perspective,” in J.
Supercomputing, Vol. 7, No. 1/2, pp. 9-
50, 1993

[2] Intel Corporation,“Intel(R) Itanium(TM)
processor microarchitecture overview,”
October 5-6, 1999

[3] AMD Corporation, “AMD Athlon(TM)
Processor Architecture,” August 23,
1999

[4] J.E. Thornton, “Parallel Operation in
the Control Data 6600,” in Proceedings
of the Fall Joint Computers Conference,
pp. 33-40, 1961

[5] E.J. Lerner, “Data-flow Architecture,”
in IEEE Spectrum, pp.57-62,April 1984

[6] J.W. Davidson and S. Jinturkar,
“Improvinginstruction-level parallelism
by loop unrolling and dynamic memory
disambiguation,” in Proceedings of the
28th Annual International Symposium
on Microarchitecture, pp. 125 –132,
1995

[7] N. Bellas, I. Hajj, C. Polychronopoulos,
and G. Stamoulis, “Energy and
Performance Improvements in
Microprocessor Design using a Loop
Cache,” in ICCD, 1999

	page1
	page2
	page3
	page4
	page5

