O 0 0o O

X86

i O
NSC89 2213 E 009 066
8 8 1 8 7 31

89 10

xX86

Design of an x86 microprocessor with data-flow engine
NSC89-2213-E-009-066

8 8 1

E-MAIL
x86 DF86
X86
X86
data-flow x86
DF86

data-flow graph
control flow data flow

data-
flow graph
data-flow graph

DF86
Data flow

Control flow

~89 7 31

jjshann@csie.nctu.edu.tw

X86

Xx86

Abstract

The objective of this project is to
study and design an x86 microprocessor
with data-flow engine — DF86. We will
design the micro-architecture of the
microprocessor using a data-flow kernel,
and verify the design by simulation and
emulation. The instruction formats,
semantics and addressing modes of the x86
instruction set are extremely complex. When
the x86 microprocessors progress to become
superscalar, many complex designs are
added to resolve these bottlenecks. However,
the bandwidths of instruction fetch and
dependence check are still too small to
exploit the inherent parallelism of programs
and to match high execution rate of multiple
execution units. In this project, we solve
these bottlenecks by building a data-flow
engine, saving the data-flow graph in the
processor, and reuse the graph. The micro-
architecture can be partitioned to three parts:
front-end decoder, data-flow engine, and
data access. The research topics include:
building, storing and maintaining the data-
flow graph, switching between control flow
and data flow, transferring control
dependence to become data dependence and
providing high-bandwidth data access.

We do the simulation to decide the
parameters of our mechanism and compare
the issue rate of our mechanism to that of

other microprocessors. Simulation results
show that the performance of our
mechanism is better than that of other
microprocessors. Under performance/cost
consideration, our mechanism can issue 2.07
X86 instructions per cycle.

Keywords x86 Instruction Set,
Microprocessor, Data-flow, Superscalar,
Data-flow Graph, High-bandwidth Data
Access.

Researchers have discussed the use of
ILP (instruction-level paralelism) to
accelerate performance for more than 20
years. In order to achieve high ILP, many
kinds of microprocessors have been
proposed, such as VLIW, superscalar and
pipeline processors. However, the complex
X86 instruction set makes it hard to improve
the performance of X86 processors. For
examples, checking instruction boundary
limits the exploitation of the ILP of

superscalar processors, and increases
hardware cost. Complex instruction

semantics makes it necessary to trandate
X86 instructions to RISC-like instructions,
and increases the burden of data dependence
checking. Besides, the complex addressing
modes make it hard to raise the clock rate
due to inefficient pipeline stage design. Even
the first Intel 1A-64 processor, Merced [2],
trandates X86 instructions to VLIW
instructions by a special hardware. However,
the clock rate of Merced is low because
Merced increases the stage delay due to
more hardware complexity. Subsequently,
Intel publicizes second 1A-64 processor—
[tanium — to translate X86 instructions to
VLIW instructions by the compiler since
Merced wastes much time to do instruction
trandation. But this processor needs
excellent compiler and recompiles all
original applications. It is inconvenient for
usersto doit.

The conceptions of Tomasulo's
algorithm and scoreboarding were applied to
implement the mechanism of out-of-order

execution in early 1960. These conceptions
were used in high performance computer
architectures, and were the pioneers of data-
driven computation. Although out-of-order
execution is only implemented in function
units, the performance it enhances is good.
This application is very suitable in the
computer architectures of traditional von
Neumann machines. Because of the demand
of large and native ILP, the design of data-
driven computer should be constructed
based on the execution with data flow

graphs.

3.1 The DF86 Microarchitecture

By the datadriven concepts, the
microarchitecture is designed following
three directions, which are the Loop
Unrolling, the Macro-Node Function, and
the Data Superscaling. This architecture is
named as the DF86 architecture. Figure 1 is
used to illustrate the DF86 architecture.

’ Memory Organization ‘

_" Front-end K:} Cache
BP @

; ’ Decoder ‘

J L

PR - —{ Data Flow Engine }.7

RF

’ BU ALU LSU
2 J ‘

e eee e ene e
1L

Data Memory
Figure 1. The DF86 Architecture

A\ 4

AGU ‘

The Front-end unit is an instruction
fetch unit that supports the execution traces
as the traditional control flow. The Decoder
decodes an instruction to an operator node
and token-like data that represent the source
and destination operands of an instruction.
The Data-flow Engine maintains data-flow
graphs and firing rules. The Data Buffer

manages the data accesses with the Data
Memory. The Register File (RF) is used to
construct a register token. The Data Prepare
Unit combines the operator node and the
ready data that the operator node needs to
form an executable instruction. Then we
send the executable instruction to the ALU
for execution.

The Loop Unrolling is based on the
dynamic loop semantic analysis to build the
data tag. By the data driven computation
method and the data superscalar mechanism,
the operators of loop match their partner in
data flow engine to make massive parallel
processing. Following the dynamic semantic
analysis, the function call is handled as the
methods of macro node in the data flow
computer. The Macro-Node Function
method is alternative with traditional
function invoking methods. With the
dependence relations, between cdler's
parameter and calee’'s arguments, and
between return values and results, the inter-
function data transfer mechanism can be
reduced to speedup function-invoked time.
The data superscalar can pump data from
memory to support structure data processing,
which can be analyzed by the dynamic
semantic analysis. The pumping data unit
can fetch multiple data from a set of data
lines and tag them for partner metching to
achieve massive pardlel instruction
execution.

3.2 The Loop Unrolling Architecture

When the Loop Semantic Analyzer
detects a loop, it will send the parameters of
requested data to the Pumping-Data Unit
and set up loop unrolling environment at the
Match Unit. Once the data enters the Match
Unit in pardlel and is matched with its
partner, we will put the corresponding
instructions of the data flow graph to data
prepare unit to wait for execution. Then the
functional unit will send the result data back
to the pumping-data unit via Register File, in
order to continuously precede the operations
that are dependent with the result data
Figure 2 is used to illustrate the Loop

Unrolling architecture.

Instruction
Stream

fequest £ oop Semantic

Anayzer _l instrugtion
@data port nooe

1
! 1
1 1
1 1
1 1
!]
1 1
1
' | Pumping-Datg request i
! Unit | tokens Loop I
i ‘ Match Data-Flow '
' Unit Graph i
H opcodes !
; :
| IS _——— e e e - A4-F---——— -4
result executable
tokens packets

mutte| | RF [Data Prepare Unit

To Function Units

Figure 2. The Loop Unrolling Architecture

3.3 The Macro-Node Function Architecture

Figure 3 is used to illustrate the macro-
node function architecture. The Function-
invoked Semantic Analyzer analyzes the
executed instruction streams and constructs
the dependence relations, between caller's
parameter and calee’'s arguments, and
between return values and results. It
manages the data-flow graph frame for each
function and makes the function’s data
input/output descriptions. By the data driven
nature, the function can be invoked by data
dependences.

Instruction Functionmimvoked
[unction-invo
Stream Semantic Analyzer

Parameters Arguments Parameters |—
Return values Results K—— Returnvalue§ |—
Macro Actor Dependence Unit Table

i 1
Function| —
Data-flo
Data- [Match Graph
Tagged =3 Unit Frame
Unit =
Function Units

Figure 3. The Macro-Node Function
Architecture

3.4. The Data Superscaling
The data superscalar can pump data
from memory to support structure data

access to achieve massive parale
instruction execution. Figure 4 is used to
illustrate the pumping data architecture.

Address < Data Access Request

Generation #

Unit
o= Data-
2 % 3 Data Access == Data &3 Tagged
o3 Unit 3] Pool = unit &=
=de [[—>
Rz

Data Cache

Figure 4. The pumping data architecture

3.5 Performance Analysis

We compare the issue rate of our
mechanism to that of other microprocessors.
The results are shown in Figure 5. In this
figure, we apply the semantic-based loop
unrolling mechanism to the two simulations,
noted as our choice and Ideal. In our choice
we assume it has 7 issue degree, 3 unrolling
degree, 64-entry inst-queue, and 3 loop
frames within a function frame. On the other
hand, the /deal means unlimited issue
degree, unlimited unrolling degree,
unlimited-entry inst-queue, and unlimited
loop frames within afunction frame.

From this figure, we find that the
performance of /deal is excellent and its
issue rate is 2.3 instructions per cycle.
Besides, the issue rate of our choice aso
surpasses all other microprocessors and
achieve at 2.07 instructions per cycle.

25

[N

=
o

[N

instructions / per cycle

o
3

iS

Pentium Pentium P6series K5series K6 series Our choice Ideal
MMX

o

Figure 5 Issue rate comparisons.

In this project, we have designed an
x86 architecture with a data-flow engine,
called the DF86 microarchitecture, construct
asimulator to evaluate the parameters of our
mechanisms, and have excellent results.
These show that the DF86 microarchitecture
IS better than other current microprocessors .
This project is fully matched with the
proposal requirements. In the future, we
will use the microarchitecture to solve
following problems. the precise interrupt,
the data structure handling, the data pipeline
execution structure, and the multiple
instruction analyzer. Finally, we will build a
prototype with the high-density FPGA
modules.

[1] B.R. Rau and JA. Fisher, “Instruction-
Level Paralel Processing: History,
Overview and Perspective” in J.
Supercomputing, Vol. 7, No. 1/2, pp. 9-
50, 1993

[2] Intel Corporation,”Intel(R) Itanium(TM)
processor microarchitecture overview,”
October 5-6, 1999

[3] AMD Corporation, “AMD Athlon(TM)
Processor Architecture,” August 23,
1999

[4] J.E. Thornton, “Parallel Operation in
the Control Data 6600,” in Proceedings
of the Fall Joint Computers Conference,
pp. 33-40, 1961

[5] E.J. Lerner, “Data-flow Architecture,”
in IEEE Spectrum, pp.57-62,April 1984

[6] JW. Davidson and S. Jinturkar,
“Improvinginstruction-level paralelism
by loop unrolling and dynamic memory
disambiguation,” in Proceedings of the
28th Annua International Symposium
on Microarchitecture, pp. 125 -132,
1995

[7] N.Bédlas, I. Haj, C. Polychronopoulos,
and G. Stamoulis, “Energy and
Performance Improvements in
Microprocessor Design using a Loop
Cache,” in ICCD, 1999

	page1
	page2
	page3
	page4
	page5

