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Parallelizing a Level 3 BLAS Library for LAN-Connected Workstations
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LAN-connected workstations are a heterogeneous environ-
ment, where each workstation provides time-varying comput-
ing power, and thus dynamic load balancing mechanisms are
necessary for parallel applications to run efficiently. Parallel
basic linear algebra subprograms (BLAS) have recently shown
promise as a means of taking advantage of parallel computing
in solving scientific problems. Most existing parallel algorithms
of BLAS are designed for conventional parallel computers; they
do not take the particular characteristics of LAN-connected
workstations into consideration. This paper presents a paral-
lelizing method of Level 3 BLAS for LAN-connected work-
stations. The parallelizing method makes dynamic load balanc-
ing through column-blocking data distribution. The experiment
results indicate that this dynamic load balancing mechanism
really leads to a more efficient parallel level 3 BLAS for LAN-
connected workstations. 0 199 Academic Press, Inc.

1. INTRODUCTION

Since 1979 researchers have developed three levels of
basic linear algebra subprograms (BLAS) [15]. One major
purpose of these subprograms is to facilitate the develop-
ment of scientific applications. BLAS are used as basic
building blocks for developing more complex and higher
level linear algebraic subprograms. For instance, Level 1
BLAS deal with vector-to-vector operations, Level 2 [7,
8] handle vector-to-matrix operations, and Level 3 [9, 10]
do various matrix-to-matrix operations. Many hardware
vendors have provided their own implementation of BLAS
optimized according to specific hardware features. With
the help of these BLAS, users can now spend less efforts
in developing application software, even with better per-
formance. Recently, parallel BLAS have been increasingly
employed to speed up scientific computations. Several par-
allel libraries have been developed on different platforms
[2, 3, 11, 14, 17].

LAN-connected workstations have been getting wide-
spread use and are considered a cost-effective parallel
computing environment for many applications. LAN-
connected workstations could be a heterogeneous environ-
ment composed of workstations with different configura-
tions or even different architectures. The situation may be
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even more complicated since each workstation may be
shared by more than one user at a time and the user number
for a workstation might change as time goes on. Therefore,
each workstation would provide unequal and time-varying
computing power to a parallel application. Computing
models are different in LAN-connected workstations and
conventional parallel computers, where a user may allocate
a group of processors for dedicated use in a time period.
Dynamic load balancing mechanisms are necessary for par-
allel applications to run efficiently on LAN-connected
workstations. However, most existing parallel implementa-
tions of BLAS were designed based on conventional paral-
lel computers, without concern for the need for dynamic
load balancing capabilities on LAN-connected work-
stations.

This paper explores the parallelization of Level 3 BLAS
for LAN-connected workstations taking dynamic load bal-
ancing into consideration. Dynamic load balancing has re-
ceived a great deal of attention in the literature [5, 6, 18,
19]. The basic idea of dynamic load balancing is to balance
the workloads on all processors to increase the system
throughput or reduce the wall clock execution time of an
application. One approach is to allow the load to be mi-
grated from heavy nodes to light ones. Our approach di-
vides a task into subtasks whose number is larger than the
processors’ and then assigns each processor one subtask
at a time. Only when a processor completes its subtask is
it assigned a new one. The approach achieves dynamic
load balancing through proper data partition and task as-
signment. We have conducted several experiments to in-
vestigate various data partition methods. According to the
results of experiments which will be described in detail in
later sections, we propose the dynamic column-blocking
method as the best data partition method to run parallel
Level 3 BLAS efficiently on LAN-connected workstations.
We have implemented a parallel LU factorization routine
using our parallel Level 3 BLAS to show the effectiveness
of our parallelizing method and discuss the issue of parallel
library interface.

In the next section we give high level descriptions of
parallel implementations of Level 3 BLAS. Section 3 dis-
cusses the importance, advantages, and issues of LAN-
connected workstations. Section 4 presents various data
distribution methods, our experiments and comparative
analysis. Section 5 discusses the implementation of LU



PARALLELIZING BLAS FOR LAN-CONNECTED WORKSTATIONS 29

factorization using our parallel Level 3 BLAS. Conclusions
and future work are presented in Section 6.

2. PARALLEL LEVEL 3 BLAS

The following is a list of the Level 3 BLAS, where o
and B3 are scalars; A, B, and C are matrices; and op means
transpose or conjugate transpose:

* GEMM forms the matrix—matrix product

C <« a X op(A)op(B) + B X C.

SYMM forms the matrix—matrix product

C—aXAB+BXC
orC—aXBA+BXC.

SYRK forms the symmetric rank-k update

C—axXAAT+BXC
orC—aXATA+BXC.

SYR2K forms the symmetric rank-2k update

C—aXABT+aXBAT+B8XC
orC—aXATB+a X BTA+ B X C.

TRMM forms the matrix—matrix product

B<—aXxop(A)B
or B« a X Bop(A).

(where A is a triangular matrix).
* TRSM forms the matrix—matrix product

B<—aXop(A B

(solves a system of equations with the same coefficient
matrix but several right-hand sides, where A is a triangu-
lar matrix)

or B« a X Bop(A™).

Each Level 3 BLAS routine, in one form or another,
represents a matrix—matrix product. To parallelize the
Level 3 BLAS efficiently, our approach constructed a
building block of matrix—matrix products, an efficient par-
allel implementation, for every Level 3 BLAS routine.

3. LAN-CONNECTED WORKSTATIONS

3.1. Computing Scenarios in
LAN-Connected Workstations

Scientific and engineering programs are getting more
and more complex and involve larger and larger amounts
of data. The result is an ever increasing need for computing

power. However, few small-to-medium-size organizations
and enterprises can afford an expensive supercomputer.
In these organizations, PCs and workstations are usually
chosen for personal computing or data processing. As the
downsizing trend continues, more and more powerful PCs
and workstations are appearing in ordinary organizations
and enterprises. These PCs and workstations are usually
connected by LANSs for sharing resources, such as printers
and file servers. Such working environments show new
opportunities for parallel computing. The following scenar-
ios show the practicality of LAN-connected environments:

1. An engineer uses a workstation for product design
and document preparation. When a design is drafted, a
simulation is performed to test or verify the design. Al-
though such simulations usually take a long time, e.g., 1-2
days, it can be speeded up considerably by utilizing idle
workstations connected by the organization’s LAN.

2. Managers often use PCs for writing notes or propos-
als. If, however, they want to employ artificial intelligence
for data analysis or decision making, the Al application
may take up to 30 min. Calculation must be speeded up
to a reasonable response time of, say, 30 s. A speedup of
60 is needed.

Although LAN-connected workstations are not as effi-
cient as supercomputers, the above scenarios nonetheless
point out how effective they could be: daily work, personal
computing, and parallel computing can be integrated in a
heterogeneous LAN-connected system of PCs or work-
stations. This results in an environment that saves money
and simplifies system management and maintenance.

3.2. Issues in Developing a Parallel Library for
LAN-Connected Workstations

Several parallel libraries of linear algebra, e.g., ScaLA-
PACK [13], already exist. Most of them are designed for
conventional parallel computers, such as hypercube ma-
chines. They can be ported to LAN-connected work-
stations if they use a portable communication library, such
as PVM. However, the ported libraries in general do not
perform efficiently in such a divergent environment. A new
design is thus needed for these libraries.

There are at least two differences between LAN-con-
nected workstations and traditional parallel computers that
must be considered when designing an efficient parallel li-
brary:

1. Communication resources. Only one message can be
transmitted on an Ethernet (bus) at any given time. In
a hypercube system, however, since each node contains
multiple physical communication links, more than one
message can be transmitted in parallel. Also, the communi-
cation links in LAN-connected workstations usually con-
tain less communication bandwidth but higher latency,
compared with those in traditional parallel computers. The
associated high communication cost in LAN-connected
workstations might limit the advantages of parallelism
for applications.
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2. Shared computing environment. When someone runs
a parallel program on a hypercube machine, he or she
can allocate a number of dedicated processors of equal
computing power. In most organizations and enterprises,
however, workstations are not used solely for parallel com-
puting. Workstations are usually used for several jobs con-
currently, and the workload on each machine changes dy-
namically. A parallel program on such a system cannot
allocate a group of workstations that have equal workloads.
Hence, dynamic load balancing is needed to help achieve
higher performance and increase system utilization.

4. PARALLEL MATRIX MULTIPLICATION IN
LAN-CONNECTED WORKSTATIONS

This section presents the parallel implementation of the
matrix—matrix product, the building block of our parallel
Level 3 BLAS library. We explored two data partition
methods, the square-blocking and the column-blocking
methods. To find the best parallel implementation with
dynamic load balancing, experiments for these two meth-
ods with both static and dynamic data allocation were
conducted. Our implementation was done using C lan-
guage and PVM [12, 16]. The scheduling of matrix compu-
tations was controlled by one host process and the multipli-
cations were done with multiple slave processes running
on different machines.

4.1. Sequential Implementation

In this subsection, we investigate a set of sequential
implementations of matrix multiplication and use their best
as the basis of comparisons for parallel implementations in
the following subsections. Matrix multiplication is a simple
operation: a straightforward implementation of about 10
lines of C code has a time complexity of O(n?) for n by n
matrices. For large matrices, the performance of matrix
multiplication is greatly affected by the locality of data
references. The way a very large array (e.g., a matrix of
2M bytes) is accessed improves the hit ratio of caches a
lot in computers with memory hierarchies (cache memory).
Block algorithms have been proposed to take advantage
of modern hierarchical memory systems [9, 10, 15]. Most
researchers in this field now agree that block algorithms
can lead to better performance in modern computers that
have hierarchical memory systems [7, 8, 15]. Below is an

example of matrix multiplication, C,x, = Asn X Byt
double Almi[n], B[n][p], CIm[p];

int i, j, k;

doubl e f;

There are five different implementations of matrix multi-
plication:

1. Loop-i-j-k. The method is used in many elementary
linear algebra textbooks. It is straightforward but performs
poorly in modern computers.

for (i=0; i<m i++)
for (j=0; j<p; j++)
{
f =0;
for (k=0; k<n; k++)
f+= AL ][kl * BIKI[]];
ailfil = f;

2. Loop-reordering. This method reorders the nested
loops of k and j in the previous one to improve the locality
of references.

for (i=0; i<m i++)
for (k=0; k<n; k++)
{

f = Ai][Kk];

for (j=0; j<p; j++)

qillj] +=f * BIKI[jl];

3. Matrix—column. This method divides the matrix—
matrix multiplication into a set of matrix—vector multipli-
cation, where each multiplies matrix A with a column of
matrix B to produce a column of matrix C.

4. Block algorithm without submatrices copy. Both this
method and the following one are block algorithms. They
divide a large matrix into smaller submatrices and then
perform matrix multiplication on these submatrices. This
algorithm operates in place on the submatrices of A and B.
When two submatrices are multiplied, the matrix—column
method is adopted.

5. Block algorithm with submatrices copy. This method
copies the submatrices of A and B into a temporary area.

Table I shows the results of our test on these five imple-
mentations. The matrices A, B, and C are 500 X 500 in
size and consist of double-precision floating-point num-
bers. They are initialized as 1.1. We used a SPARC station
2 as our platform, and the code was compiled with the
GNU C compiler. The time was measured by ti nme().
Obviously, the upper algorithms are less efficient. The
block algorithm with submatrices copy performs best.

The above results may be explained through analysis of
the cache locality of the memory references. The SPARC
station 2 is equipped with a direct mapping cache of 64K
bytes, where each cache line contains 16 bytes, i.e., two

TABLE I
Performance Test on Five Versions of Matrix Multiplication

Algorithm Exec. time (s) Speed rating Cache misses
loop-i-j-k 108 1.00 125,250,000
loop-reordering 87 1.24 125,125,000
matrix-column 76 1.42 62,750,000
block w/o copy 70 1.54 4,000,000
block with copy 63 1.71 2,875,000
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double-precision floating-point numbers in SPARC. Con-
sider the cache misses when accessing the matrices. The
block algorithms here are of block size 50 X 50. A cache
system usually moves a cache line of data from the main
memory to the cache when a cache miss occurs. If the data
needed next are in the same block, the CPU can obtain
the data from the cache instead of from the main memory,
thereby reducing the data access time. Different algorithms
use different memory access patterns, and thus need differ-
ent execution time. The fourth column in Table I shows
the predicted number of cache misses for the five imple-
mentations of matrix multiplication.

Another factor that affects the performance is the use
of registers for scalar variables. For example, in the matrix—
column method, a register holds the temporary result from
a sequence of add operations. The matrix—column method
accesses memory n times when producing a column of
length n. In contrast, the loop-reordering method needs
n? memory accesses to produce a column of length n.
The matrix—column method thus outperforms the loop-
reordering method.

4.2. Static Data Allocation

The column-blocking method and the square-blocking
method are two simple and widely used data partition
methods for matrix multiplication [2-4, 11, 14, 17].

1. The column-blocking method: Matrix B and C are
partitioned into the same amount of column blocks. Each
column block of C is computed from matrix A and the
corresponding column block of B. The partition is
shown below:

A B C

2. The square-blocking method: Matrix A is partitioned
into row blocks and matrix B column blocks. Matrix C is
partitioned into blocks with the number equal to the prod-
uct of the numbers of blocks in A and B. Each block of
Cis computed from corresponding row and column blocks
in A and B. The partition is depicted below:

A B C

p— u

As regards static data allocation, matrix C in both meth-
ods is partitioned into the same amount of blocks as the

TABLE II
Static Allocation by the Column-Blocking Method
Send/recv

np Recv. A (s.) Computation (s.) col. (s.) Total (s.)

2 11 32 4 47

4 18 18 2 38

5 21 16 3 40
10 38 6 3 47

number of slave processes. In the static column-blocking
method, the host process first sends all slave processes
matrix A and then each of them a column block of B. Each
slave process computes a corresponding column block of
C from matrix A and the column block of B received, and
then sends the column block of C back to the host process.
In the static square-blocking method, the host process
sends each slave process a row block of A and a column
block of B. After computation, a slave process sends the
corresponding block of C back to the host process.

Tables II and III show the execution times of both meth-
ods in our experiments performed on SPARC stations
(Sun4) connected by a 10 Mbps Ethernet. The np in the
tables denotes the number of slave processes participating
in the computation. Each slave process runs on a distinct
processor. The matrices, A, B, and C, are 500 X 500 in
size and each consists of double-precision floating-point
numbers. The program was compiled with the GNU C
compiler and the execution time was measured byt i me() .
In the static column-blocking method, matrix B (500 X
500) is evenly divided into np column blocks. In the static
square-blocking method, matrix C is divided into 2 X 1
(np =2),2X2(np =4),and 4 X 2 (np = 8) blocks. The
execution time for the static column-blocking method is
the summation of time for receiving matrix A, time for
computation, and time for sending/receiving the column
blocks in the slave process. The execution time for the
static square-blocking method is the summation of time
for receiving the row and column blocks of A and B, time
for computation, and time for sending the block of C in
the slave process.

The execution time for both methods is shorter than
that for the sequential ones in Table I. Tables IT and I1I also
show that the static square-blocking method is somewhat
more efficient than the static column-blocking method.
The result may be explained by the communication costs.
Table IV shows the communication costs of both meth-

TABLE III
Static Allocation by the Square-Blocking Method
np Recv. (s.) Computation (s.) Send back (s.) Total (s.)
2 13 35 1 49
4 17 18 1 36
32 8 1 42
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TABLE IV
Communication Costs in Static Allocation Methods

TABLE V
Communication Costs in Dynamic Allocation Methods

Method (static) Communication cost

Methods (dynamic) Communication cost

Vip X (size(A) + size(B)) + size(C)
np X size(A) + size(B) + size (C)

Square-blocking method
Column-blocking method

Square-blocking
Column-blocking

q X size(A) + p X size(B) + size(C)
np X size(A) + size(B) + size (C)

ods represented by the amount of data transferred. For
the square-blocking method, matrix A and matrix B
are partitioned into Vnp row blocks and column blocks
respectively.? Since each row block or column block is
involved in the computation of \/@ blocks of matrix
C, there are in total \/n_p copies of matrices A and B sent
to the slave processes. The matrix C needs to be trans-
ferred only once, obviously. Thus the communication cost
is Vinp X (size(A) + size(B)) + size(C). For the column-
blocking method, that matrix A is sent to each slave process
once causes transfer of np copies of A. Matrices B and C
need to be transferred only once. The communication cost
is np X size(A) + size(B) + size(C).

The communication cost for both methods is affected
by two factors, np and matrix size. When the matrix size
is fixed, for small np (e.g., np = 4), the static square-
blocking method is a bit better than the static column-
blocking method. For large np, the static square-blocking
method easily beats the static column-blocking method
because its communication cost growth is much slower.
Now, consider the other factor, matrix size. Let np be 4
and let matrix A and matrix B be of equal size, for example.
The communication cost in the static square-blocking
method is 2(size(A) + size(B)), whereas that in the static
column-blocking method is 4 - size(A) + size(B). The ratio
of the communication costsis 4 : 5. As the matrix size grows,
the static square-blocking method performs better because
its communication cost increases more slowly.

4.3. Dynamic Data Allocation

Dynamic data allocation methods are like static ones,
except that the matrices are partitioned into finer blocks
so that the partitioned blocks in matrix C are more than
the slave processes. Each block dispatching is decided dy-
namically, according to the time-varying workload and
computing power of processors. The dispatching intro-
duces dynamic load balancing, balancing the workload of
processors, to reduce the wall clock execution time of an
application and promote system utilization.

We used two dynamic data allocation methods based on
the data partition methods mentioned in the previous
section:

1. The dynamic column-blocking method. In the begin-
ning, the host process sends matrix A and a column block in
B to each slave process. Then it sends a new undispatched

2 Without loss of generality, here np is selected as a square number.

column block of matrix B to a slave process, once it receives
a result from the slave process. The host process stops
after receiving all column blocks of C. On the other hand,
a slave process first receives matrix A and then repeats
the following sequence: receives a column block of B, com-
putes the multiplication for the corresponding column
block of C, and then sends the result back.

2. The dynamic square-blocking method. The host pro-
cess first sends a row block of A and a column block of B
to each slave process, which computes and returns the
result. Then it sends one undispatched row block of A and
one undispatched column block of B to a slave process,
once it receives the result from the slave process. The host
process stops after receiving all blocks of C.

Table V shows the communication costs of these two
methods, represented by the amount of data transferred.
In the dynamic square-blocking method, matrix A contains
p row blocks and B contains g column blocks. As in the
discussion for Table IV, there will be g copies of matrix
A and p copies of matrix B transferred from the host
process to the slave processes. Only one copy of matrix
C needs to be sent back to the host process. Thus, the
communication cost is g X size(A) + p X size(B) +
size(C). The communication cost for the dynamic column-
blocking method is the same as that for the static method
in Table IV. In summary, the communication cost for the
square-blocking method depends on the number of parti-
tioned blocks in both A and B, while the cost for the
column-blocking method is independent of the number of
partitioned blocks in B but influenced by the number of
slave processes.

Dynamic load balancing might be improved by fine grain
size. For the dynamic square-blocking method, fine grain
size means more partitioned blocks in matrices A and B
(large g and p). That large p and ¢ lead to large communi-
cation cost might make dynamic load balancing contrarily
worsen the performance of the dynamic square-blocking
method. The experiment in Table VI does reflect this situa-
tion. This experiment used four slave processes on Sun
4 workstations of equal computing power and load, and
matrices A, B, and C contain 500 X 500 elements each.

The communication cost for the dynamic column-
blocking method, as computed in Table V is unrelated to
the grain size. Therefore, the dynamic column-blocking
method is a better choice when the grain size is fine and
the number of slave processes is fixed. Table VII shows the
result of the experiment for the dynamic column-blocking
method with four slave processes.
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TABLE VI
The Dynamic Square-Blocking Method with
Different Grain Sizes

P Xq
(Number of row (Number of column Size of block in C
blocks in A) blocks in B) (granularity) s
4 4 125 x 125 46
5 5 100 X 100 57
10 10 50 X 50 83
20 20 25 X 25 129

Table VIII shows the execution time of matrix multipli-
cation on unequally loaded processors using static square-
blocking, dynamic square-blocking, static column-
blocking, and dynamic column-blocking methods respec-
tively. They were run with four slave processes on distinct
Sun 4 workstations connected by a LAN and one of them
has a particularly high load (4.1 in UNIX r up command,
others 0.1). The results indicate that methods with dynamic
load balancing do have better performance in unequally
loaded environments.

The static square-blocking method has been cited in
the literature as the fastest method for parallel matrix
multiplication in equally loaded environments [17]. Our
results in Table VIII show that in unequally loaded envi-
ronments, the dynamic column-blocking method is better
than the dynamic square-blocking method. In a practical
working environment, the load is time-varying; i.e., the
environment may sometimes be equally loaded, sometimes
not. We conducted another experiment to investigate
which method among those discussed in this paper, on the
average, performs best in a practical working environment.
In the experiment, each method was executed over 140
runs to calculate the average execution time. The 140 runs
are distributed evenly over a duration long enough to cap-
ture the characteristic of time-varying work load in a practi-
cal working environment. For a run we picked five work-
stations randomly, one as the host process and the others as
the slaves. The computing environment for this experiment
consisted of 45 Sun workstations of different architectures
and configurations and distributed on two different sub-
nets. Each workstation is a time-sharing multiuser system
with time-varying work load. In other words, each worksta-
tion provided a different and time-varying computer power
to applications. Every two pairs of workstations might have

TABLE VII
The Dynamic Column-Blocking Method
with Different Grain Sizes

Granularity (size of column block in B) s
1 column 44
10 columns 44

TABLE VIII
A Comparison of Performance in an
Unequally Loaded Environment

Methods (grain size) s
Static square-blocking (250 X 250) 185
Dynamic square-blocking (50 X 50) 92
Static column-blocking (500 X 125) 208
Dynamic column-blocking (500 X 1) 50

different data transfer speed since they may exist in differ-
ent subnets. The experiment result is shown in Table IX.

Table IX shows that the dynamic column-blocking
method needs shortest time in average. The table also
indicates that dynamic square-blocking method does not
improve its performance with finer granularity, a result
that we expected based on Table VI. Our experiment, thus,
points out that the dynamic column-blocking method is
the best candidate for LAN-connected workstations.

4.4. High-Speed LAN and Broadcasting

The fastest sequential algorithm in Section 4.1 takes 63
s. Section 4.2 shows that the fastest method on a 10M bps
Ethernet takes 36 s for parallel matrix-multiplication with
four slave processes. The speedup is less than 2. The major
reason for the unsatisfying speedup should be the commu-
nication costs. Here we discuss two promising improve-
ments of communication technology, high-speed LAN and
broadcasting facility, to explore which data partition
method, dynamic column-blocking or square-blocking,
would benefit from such improvements.

Since our environment has no high-speed LAN (faster
than 10M bps), our discussion is based on a simulated one.
We reduced the amount of data transferred to 1/10 to
simulate the reduced communication cost on high-speed

TABLE IX
The Mean of the Execution Time of Seven
Implementations Each over 140 Samples

Methods (granularity) Average execution time

Dynamic column-blocking 42.02
(1 column)

Dynamic square-blocking 50.77
(125 x 125)

Dynamic square-blocking 53.84
(100 x 100)

Dynamic square-blocking 80.38
(50 X 50)

Dynamic square-blocking 142.21
(25 X 25)

Static column-blocking 66.82
(125 columns)

Static square-blocking 63.05

(250 x 250)
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TABLE X
The Column-Blocking Method with Dynamic Load
Balancing on a 100M bps Ethernet

TABLE XII
The Column-Blocking Method with Broadcasting and
Dynamic Load Balancing on a 100M bps Ethernet

np Recv. A (s) Computation (s) Recv/send col. (s)  Total (s)

2 1 32 0 33
4 2 17 0 19
5 2 16 0 18
8 3 11 0 14
12 6 7 0 13
16 7 5 0 12
20 9 4 0 13
25 11 4 0 15

LAN. Tables X and XI show the performance, in such an
environment, of the dynamic column-blocking and square-
blocking methods. When np = 4, both dynamic column-
blocking and square-blocking methods run 3.3 times faster
than the sequential version (the block algorithm in Section
4.1). This indicates that both these methods can take advan-
tage of high-speed LANs to improve their performance
and scalability.

Consider a high-speed LAN with the broadcasting (or
multicasting) facility. There is only one, the column-
blocking method, benefited with the broadcasting facility,
because the method involves broadcasting matrix A in the
first step. The experiment in Table XII is a modification
of that in Table X, where the time for receiving matrix A
is kept constant as np is scaled up. When np = 4, the speed
is 3.5 times higher than the sequential version. When
np = 20, the speed is 12.6 times higher.

Most parallel BLAS libraries employ the static square-
blocking method. This approach is effective because it
takes advantage of the interconnection topology of a par-
ticular architecture, such as mesh, and the block algorithms
of sequential implementation on each processor. As dy-
namic load balancing is introduced, the square-blocking
method may cause a rapid increase of number of data
transferred. Hence, the dynamic column-blocking method
is superior. In addition, other than the dynamic square-
blocking method, the dynamic column-blocking method
can take advantage of broadcasting and multicasting, two
promising facilities. In summary, the introduction of dy-
namic load balancing may change our perspective on data

TABLE XI
The Square-Blocking Method with Dynamic Load Balancing
on a 100M bps Ethernet

np Recv. (s) Computation (s) Send (s) Total (s)

2 1 32 2 35

4 2 15 2 19

5 2 13 2 17
10 4 7 0 11
20 28 5 12 45

Recv/send

np Recv. A (s) Computation (s) col. (s) Total (s)

2 0.5 32 0 33

4 0.5 17 0 18

5 0.5 16 0 17

8 0.5 11 0 12
12 0.5 7 0 8
16 0.5 5 0 6
20 0.5 4 0 5
25 0.5 4 0 5

partition methods. The results of our experiments point
out that the dynamic column-blocking method outper-
forms the dynamic square-blocking method under current
environment, even high speed LANs with broadcasting
facilities.

5. LU FACTORIZATION

Most problem solving work is done with a sequential
program at the beginning. As the problem size and compu-
tation need grow, parallel computing shows a promising
way speeding up the problem solving. There are at least two
approaches to speed up the problem solving with parallel
computing. One is to develop a parallel algorithm and
work out the corresponding parallel implementation. This
approach requires understanding of the problem solving
process, and also faces the high costs of designing, coding,
debugging, and testing.

Another approach is to replace the associated sequential
libraries used by the sequential program with parallel ones,
and the program context changes nothing. An example is
to replace the sequential BLAS in scientific programs with
parallel BLAS. This approach, unlike the former, seems
unable to take advantage of all parallelism. However, the
performance improvement is good for many cases at a
negligible cost.

To apply the second approach smoothly, an important
premise for the parallel library is to maintain its interface
consistent with the original (sequential). Unfortunately,
few existing parallel libraries meet this requirement. For
example, most parallel numerical library routines of static
square-blocking methods, e.g., Sca LAPACK, require addi-
tional parameters to describe data block size and/or the
processor topology. These parameters do not appear in
the sequential version. Our parallel BLAS library meets
this premise. Our routines contain an interface which is
consistent with the well-defined sequential one [1, 15].
They adopt the dynamic column-blocking method, whose
communication cost is not affected by the block size.
Therefore, in our library, the block size is set to one column
for better performance and release user from specification
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of block size. Each time our parallel routine is called, it
determines the optimal number of processors to be used
in parallel according to the input matrix size. This feature
releases users from calculating the optimal number of pro-
cessors needed. In addition, the trivial work in all the data
communication and processor arrangement is also encap-
sulated.

Here is an example applying the second approach with
our parallel Level 3 BLAS. The application programmed
is LU factorization [15]. In the computation of LU factor-
ization, the matrices to be processed are getting smaller
at each nextiteration. Our parallel routines which automat-
ically determine the optimal processor number is very help-
ful for such kind of application to attain good performance
at each iteration. Two Level 3 BLAS routines, TRSM and
GEMM, performing triangular solve and rank-k update
respectively, contribute most to LU factorization.
Applying the second approach, the parallel implementa-
tion of LU factorization is easy; we just linked routine
DGETREF, the LU factorization in LAPACK [1], to our
parallel TRSM and GEMM.

To factorize a matrix with 800 X 800 elements takes
152 s in the sequential program and 102 s in our parallel
version with four processors. The parallel program runs
about 1.5 times faster than the sequential one. The speedup
of 1.5 with four processors for LU factorization is only a
bit smaller than the datum for its building block (GEMM
for matrix multiplication) in Section 4 (63 s/36 s = 1.75).
This indicates that higher level applications can be speeded
up by our parallel Level 3 BLAS routines at a negligible
cost. Furthermore, our parallel Level 3 BLAS routines
with the dynamic column-blocking method can produce
significant effect of dynamic load balancing when applied
in higher level applications. Table XIII shows the average
execution time of 140 runs for LU factorization whose
underlying parallel Level 3 BLAS routines use static
square-blocking and dynamic column-blocking methods
respectively. The 140 runs were done in the same environ-
ment as for Table IX in Section 4.3.

6. CONCLUSION AND FUTURE WORK

Our experiments on parallel Level 3 BLAS, considering
dynamic load balancing, indicate that

1. When dynamic load balancing is applied on LAN-
connected workstations, the dynamic column-blocking

TABLE XIII
The Effect of Dynamic Load
Balancing on LU Factorization

Methods of parallel BLAS Mean (s)
Static square-blocking 206.1
Dynamic column-blocking 180.8

method is the best choice. The static square-blocking
method adopted in most existing parallel BLAS libraries
is not.

2. High-speed LANSs plays a significant role in improv-
ing currently unsatisfying performance. To improve the
scalability of parallel implementation, the column-blocking
method can take more advantage of the broadcasting facili-
ties than the square-blocking method.

3. With a consistent interface between sequential and
parallel numerical libraries, a sequential program can be
sped up with the parallel libraries at a negligible cost.

This paper focuses on dense matrices. However, sparse
matrices or matrices of other special types are used in
many scientific applications. To provide efficient parallel
libraries for scientific applications, further studies are
needed.
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