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中 文 摘 要 ： 本研究主要是要求得埋在層狀半空間中任意分佈外力所造成

之地盤反應。目前能夠將外力加在層狀半空間內部的解，一

般是指 Green Function 的解，但 Green Function 為一集中

載重之解，因此會有奇異點(singularity)之現象。而本文是

以任意分佈載重模擬外力，因此不會有奇異點的現象。這對

目前利用邊界元素法(BEM)求地盤振動與基礎阻抗矩陣將會有

大幅度之改進。 

   本研究之求解過程中，將假設外力在徑向(r-方向)之分佈

為片段線性(piecewise linear)，在θ-方向可分解成傅立

葉級數(Fourier Series)。此分佈外力可作用在任何深度。

然後可利用主持人過去所發展之方法直接求圓柱座標系統中

之波動方程式之解，其最後之解將為一 Bessel Function 之

積分式。本文法最大之持點為外力作用位置之位移沒有奇異

的現象。 

   又由於載重片段線性,因此只要求得一小區域線性分析之

解,即可求得所有片段線性分佈之解。本研究將漸漸縮小分佈

載重面積,以觀察其應力的集中性,及其對位移的影響。 

 

中文關鍵詞： Wave Propagation, Analytic Solution, Green Function 

英 文 摘 要 ： The paper is to deal with the problem of the response 

of stratified half-space subjected to an arbitrary 

distributed loading on an axial symmetric area buried 

in stratified half-space. Except boundary element 

method, the response to a force buried in a 

stratified half-space is rarely dealt with. However, 

Green function employed in boundary element method 

will creat singularity situation at the location of 

source point. The presented method can avoid the 

singularity situation, since the external loading is 

not a concentrated load and is arbitrarily 

distributed over an axial symmetric area buried in 

stratified half-space. 

In the process of the solution, the arbitrarily 

distributed loading can be decomposed into a Fourier 

Series in θ-direction and piecewise linear 

distribution in r-direction is assumed for each 

Fourier component. Then the wave equations in 

cylindrical coordinates are directly solved using the 

technique developed by the author. The solution will 

be an integral of Bessel function with respect to 



wave number. The advantage of the method will be that 

singularity problem can be avoided. 

  Since the distributed loading is piecewise linear, 

one just need to solve the problem for a triangular 

distribution on an axial symmetric area and then sums 

up all the solution for all the triangular 

distribution .This summation will be the solution for 

arbitrary distributed loading. Some numerical results 

for shrinking the distributed area will be given to 

show the concentrated effect of the distributed 

loading. 

 

英文關鍵詞： Wave Propagation, Analytic Solution, Green Function 
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中文摘要。 

 
關鍵詞:Wave Propagation, Analytic Solution, Green Function  

 

   本研究主要是要求得埋在層狀半空間中任意分佈外力所造成之地盤反應。目

前能夠將外力加在層狀半空間內部的解，一般是指Green Function的解，但Green 

Function 為一集中載重之解，因此會有奇異點(singularity)之現象。而本文是以任

意分佈載重模擬外力，因此不會有奇異點的現象。這對目前利用邊界元素法(BEM)

求地盤振動與基礎阻抗矩陣將會有大幅度之改進。 

   本研究之求解過程中，將假設外力在徑向(r-方向)之分佈為片段線性(piecewise 

linear)，在θ-方向可分解成傅立葉級數(Fourier Series)。此分佈外力可作用在任何

深度。然後可利用主持人過去所發展之方法直接求圓柱座標系統中之波動方程式

之解，其最後之解將為一Bessel Function 之積分式。本文法最大之持點為外力作

用位置之位移沒有奇異的現象。 

   又由於載重片段線性,因此只要求得一小區域線性分析之解,即可求得所有片

段線性分佈之解。本研究將漸漸縮小分佈載重面積,以觀察其應力的集中性,及其

對位移的影響。 
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Abstract 

Keyword: Wave Propagation, Analytic Solution, Green Function 

 

The paper is to deal with the problem of the response of stratified half-space 

subjected to an arbitrary distributed loading on an axial symmetric area buried in 

stratified half-space. Except boundary element method, the response to a force buried 

in a stratified half-space is rarely dealt with. However, Green function employed in 

boundary element method will creat singularity situation at the location of source 

point. The presented method can avoid the singularity situation, since the external 

loading is not a concentrated load and is arbitrarily distributed over an axial 

symmetric area buried in stratified half-space. 

In the process of the solution, the arbitrarily distributed loading can be decomposed 

into a Fourier Series in θ-direction and piecewise linear distribution in r-direction is 

assumed for each Fourier component. Then the wave equations in cylindrical 

coordinates are directly solved using the technique developed by the author. The 

solution will be an integral of Bessel function with respect to wave number. The 

advantage of the method will be that singularity problem can be avoided. 

  Since the distributed loading is piecewise linear, one just need to solve the problem 

for a triangular distribution on an axial symmetric area and then sums up all the 

solution for all the triangular distribution .This summation will be the solution for 

arbitrary distributed loading. Some numerical results for shrinking the distributed area 

will be given to show the concentrated effect of the distributed loading. 
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Introduction 

 

Ground vibration due to near-by sources has been paid attention to over past 

several decades. Especially, for the sensitive facility and high-tech productions 

equipment, this vibrations is annoying. Therefore, how to predict the vibrations 

become an important subject. Wood and Jedele [1] have collected some observed data 

and deduced them into a simple formula expressing attenuation phenomenon of 

ground vibrations in term of soil damping and distance between source and 

observation locations. From more theoretical aspects, Sheng et al. [2] and Krylou [3] 

have employed Euler beam theory to model whole track including sleepers and ballast 

and then to solve the problem of moving train. Kaynia et al.[4] have proposed a more 

sophisticated analysis model, which takes dynamic interaction into account, to 

evaluate ground vibration induced by passing trains. Moreover, Karlstrom [5] has 

employed a refined semi-analytic model to investigate the effect on ground vibration 

due to accelerating train. 

Most of the above analysis model, finite element or boundary element methods are 

used to model half-space medium or layered half-space medium. Regarding analytical 

approach to evaluate ground vibration due to a specific source, Apsel and Ruco [6] 

have calculated the vibrations at the locations on half-space medium due to a point 

source (Green’s Function). Vostroukhov [7] et al. have employed integral transform 

method to obtain ground vibration in layered half-space due to a buried uniform load 

at a circular area. 

Also, Kausel and Peer [8] has employ layer elements to obtain Green function for 

layered medium. Green function has been the fundamental solution for the boundary 

element method. However, the singularity situation occurs at the location of source 

point. The major task of boundary element method is to deal with the singularity 

problem. The paper is trying to obtain the solution for distributing the point 

(concentrated) load to a small area. Therefore, the singularity problem will disappears. 

In the solution process, the distributed loading on an axial symmetric area can be 

decomposed into an infinite series of Fourier components with respect to azimuth. For 

each Fourier components, triangular distribution in r -direction is assumed.  

To solve the problem mathematically, the whole layered half-space medium is 

divided into two domains (upper and lower domains), the upper domain is the domain 

above the level where the external loading is applied, and the other one is the lower 

domains which is below the level. For each domain, the technique of decomposing the 

loading, which is developed by Liou [9], is employed. The decomposed loading will 

automatically match the forms of boundary values of general solutions of three 

dimensional wave equations in cylindrical coordinates for the layered stratum. Then, 
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the boundary conditions of free surface , attenuation phenomenon, and the continuity 

conditions of displacement and stress components at the interface of the two domains 

(above and below the level) are imposed to obtain the solution . 

The analytical expression for vibration at a specific location in a layered medium 

will end up with a form of semi-infinite intergration with respect to wave number k , 

and Rayleigh singular pole existing in the integration path if there is no material 

damping in the medium. However, if material damping is always assigned in the 

medium, the singular pole will move away from intergration path. And, from the 

decaying nature of the integrand with respect to wave number k  as proven in Liou’s 

work [10], the vibration can be calculated by integration only up to a certain upper 

limit 
uk without losing accuracy. 

The numerical results for the cases of equal magnitude of total loading with 

different distribution areas will be compared each other. This will show the 

phenomenon of variation of stress and displacement components around the different 

distribution areas of the total loading. The solution should be close to Green function 

solution as the distribution area getting smaller. However, no singularity situation like  

that in Green function solution at source point will occur in the presented solution.  

 

Analytical Solutions For Dynamic Loadings In Layered Medium 

 

The general solution of the differential equations for wave propagation in 

cylindrical coordinates is independently found for each layer in layered medium. The 

displacement and stress continuity conditions at the horizontal interfaces in layered 

system are then imposed for further expressing the displacement and stress fields in 

terms of the prescribed dynamic loadings. The total system of prescribed dynamic 

loadings applied in layered half-space is shown in Figs.1. In Fig.1(a), the shaded area 

is the locations where dynamic loading is applied. Fig.1(b) shows the distribution of 

the dynamic load in r-direction for each Fourier component. The prescribed dynamic 

loadings on axially symmetric area can be expressed in cylindrical coordinates in 

terms of Fourier components with respect to azimuth as follows : 
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where superscript n  denotes thn  Fourier component in the series; ω is frequency ;
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2rr 21  . 

Since the time variation iωte  appears on both sides of the equation, it will be 

omitted hereinafter. For the cases of dynamic loadings applied at arbitrary area, the 

loading can be expressed by the summation of several axial symmetric areas in 

Eq.(1) . 

Since the external load is applied at level i in Fig1(a), the domain is divided into 

two domains. One is the domain above level i and the other is the domain below level 

i. One can consider the domain below level i first. As show in Fig.1(a), the general 

differential equations for wave propagation in a particular layer j with harmonic 

excitation can be obtained using the technique separating the dilatational wave from 

the rotational wave . And the technique of separation of variables is employed to solve 

the independent differential equations for the dilatational wave and the rotational 

wave. After combining the solutions for the dilatational and the rotational waves, the 

general solution of the differential equations of wave propagation for 
thn  Fourier 

component can be expressed in the matrix form as follows : 

r

z

θ

cosnθ cosnθ
u (r,z) 0 0

sinnθ sinnθ

cosnθ cosnθ
u (r,z) = 0 0

sinnθ sinnθ

-sinnθ -sinnθ
u (r,z) 0 0
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                (2) 

or 

1Lu = LJκ eA  

where 

n n

n

n n

J (kr) 0 (n/r)J (kr)

= 0 kJ (kr) 0

(n/r)J (kr) 0 J (kr)

 
 
 

  

J                                (3) 

matrix 1κ  is defined by Eq. (A-1) in Appendix,  

vector 
T

1 1 1 2 2 2= ( A , B , C , A , B , C )A  is unknown coefficient vector determined 

from the boundary conditions at the upper and the lower interfaces of the layer, 6 6  

diagonal matrix j j j j j j-v z -v z -v z v z v z v z
= diag( e , e , e , e , e , e ),

   
e
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2 2 2 2 2 2

j pj j gj
ν = k - (ω /c )  , ν = k - (ω /c ) , 

pj
c  and 

gj
c  are compressional and shear wave velocities respectively in the layer 

(
thj layer), k is wave number in horizontal direction, 

n
J (kr)  is first kind of 

Bessel function of order n , and 
n n

J (kr)= [dJ (kr)/dr] .  

  The stress field in the layer can be obtained by differentiating the displacement 

field of Eq.(2) with respect to the corresponding variables r , z and θ  , and then 

multiplying it with constitutive matrix of elasticity. The stress components on 

horizontal plane, with the azimuthal variation of matrix L (representing symmetric 

and antisymmetric Fourier components with respect to θ=0 ) in Eq.(2) factored out, 

can then be expressed as follows :  

rz

zz

θz

τ (r,z)

t = σ (r,z) =

τ (r,z)

 
 
 
 
 

2Jκ eA                                             (4) 

where matrix 2κ  is defined by Eq.(A-2) in Appendix. 

  Since the unknown coefficients in vector A are determined from the boundary 

conditions of the layer, the displacement and the stress fields of Eqs.(2) and (4) can be 

expressed in terms of the unknown displacement and stress components at the lower 

interface of the layer [9,11]. Moreover, the displacement and stress components at the 

upper interface can be combined together and written in terms of the displacement 

and stress components at the lower interface as follows [9,11]:  

j
1

j1j YEEaY


                                                   (5) 

where 6 6  matrix  ,diagE J J in which Bessel matrix J  is shown in Eq.(3), 

transfer matrix 
j(d )-1 -1

ja = κe κ  is defined by Eq.(A-3) in Appendix in which matrix 

  
T

T T

1 2
κ = κ , κ  , diagonal matrix 

jj z=d(d )= |e e in which jd is the thickness of the 

layer, and 1jY  and jY  are the unknown displacement-stress vectors at the upper 

and the lower interfaces of the layer, respectively. 

Consider the total lower domain shown in Fig.1. For a given layer in the system, 

Eq.(5) shows that the displacement-stress vector at the upper interface can be 
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expressed in terms of the displacement –stress vector at the lower interface. Therefore, 

by imposing the displacement and stress continuity conditions at the horizontal 

interfaces from the first top layer down to the half-space layer, one can obtain the 

displacement-stress vector at the surface of the total system in terms of the 

displacement-stress vector at the surface of the half-space layer as expressed by 

Eq.(6). 

M
1

M
1

M YETEYEaaEaY


  2i1ii                       (6) 

  Consider the half-space layer in Fig.1 alone. The general solutions of differential 

equations of wave propagation and the stress field in the half-space layer are similar 

to Eqs.(2) and (4) respectively except that upward propagating reflection waves do 

not exist. The displacement-stress vector at the surface of the half-space layer can 

then be written as  
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u
Y = = Eκ A

t
                                              (7) 

where matrix     
T

T T

1 2
κ = κ , κ  in which submatrices 

1κ  and 
2κ  are defined by 

Eqs(A-1a) and (A-2a) in Appendix respectively, and T

1 1 1= (A ,B ,C )A  is unknown 

coefficient vector determined from the boundary conditions at the surface of the 

half-space layer.  

  

 Substituting MY in Eq.(7) into Eq.(6) , Eq.(6) can be written as  
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where 11T  ~ 22T  are submatrices of matrix T  in Eq.(6). After some matrix 

manipulations of eliminating the unknown vector A , one can obtain the 

displacement vector iu  in terms of the stress vector it . 

   i
1

i
11

222121212111i tJQJtJκTκTκTκTJu


             (9)                       

i
11

i uJJQt
                                                   (9a) 

If the layered medium has a rigid lower boundary, then Mu = 0  in MY  of Eq.(6). 
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This leads to -1

12 22Q = T T  for Eq.(9). 

Now, consider the upper domain(above level i ). The derivation is similar to the 

derivation for lower domain (below level i) above (Eqs.4-9). But the boundary 

condition at is traction free for free surface. 

Therefore, the displacement-stress vector at free surface can be expressed as 
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Applying the boundary condition of free surface 0t =0, one can obtain  

i
1

21
1

22i uJTTJt
                                                (11) 

i
1

22
1

21i tJTTJu
                                               (11a) 

By comparing it in Eq.(11) and it tin Eq.(9), one can say that it - it must be equal 

to  
thn  component of external load in Eq.(1) due to the stress continuity. This can be 

expressed as 

nii ttt                                                         (12) 

where  Tnt (r)τ(r),σ(r),τ n
z

n
zz

n
rz   in Eq.(1) 

 

As shown in Fig.1(b), the external loadings are assumed to be triangularly distributed.  

Thus, the loading distribution in r-direction can be expressed as follow; 

h(r)sτand,h(r)qσh(r)pτ n
θz

n
zz

n
rz  ,                         (13) 

where 



























otherwise0

rrrif
ε

rr
1

rrrif
ε

rr
1

h(r) 00
0

00
0





                                (13a) 
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,
2

rr
r 21
0


 , p , q  and s are intensities of there kinds of distributed loadings. The 

technique developed by Liou [9, 11] is employed to decompose the loadings in 

Eqs.(13). And after some mathematical manipulations as shown in Liou’s work[9], 

one can obtain the following equation.   


































































0

1n1n1n1n

n

1n1n1n1n

0
n
z

n
zz

n
rz

n dkdk

s

q

p

DD0DD

0D0

DD0DD

JDPJτ







     (14) 

where 

    h ( r ) d r( k r )J
2

r
D

2r

1r
1n1n       

    h ( r ) d r( k r )rJD
2r

1r
nn                                (14a)                              

and 

   dr(kr)h(r)J
2

r
D

2r

1r
1n1n     

Now, one can employed Eq.(12) by substituting Eqs.(9a), (11) and (14) into 

Eq.(12) ,one can obtain  

    dkDPTTκTκTκTκTJu

1

0
21

1-
22

1-
212111222121i



           (15) 

After displacement vector  Tiu θzr u,u,u  has been obtained, one can employ 

Eqs.(9a) and (11) to calculated the stress components  Tit θzzzrz τ,σ,τ  and 

 Tit θzzzrz τ,σ,τ  at level i for lower and upper domains in Fig.(1), 

respectively . 

Since the displacement vector iu and stress vectors it and it  have been 

obtained , the displacement components and stress components on every horizontal 

plane in both domains can be calculated by using the formula similar to Eqs.(10) or 

(6). These formula can be derived easily. 

For the stress components on the vertical cylindrical surface, one can employed the 

equations derived in references 9 and 11. 
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


















































 











u

u

u

z

r

z

zz

rz

r

rz

rr
1

2
1

1 JJJJ                                     (16) 

where 

























000

(kr)J
r

n
0(kr)J

0(kr)kJ0

nn

n

1J                                    (16a) 

































































(kr))J
2

k

r

n

r

(kr)J
G(20(kr)J

r

n
(kr)J

r

n
G2

000

(kr)J
r

n
(kr)J

r

n
G20))kr(J

r

n

r

)kr(J
(G2

n

2

2

2
n

n2n

n2nn2

2
n

2J
       (16b) 

 matrix J  is expressed in Eq.(3), G is shear modulus and ru , zu , u , rz , 

zz and z  are the displacement and stress components at horizontal plane of the 

same locations where rr , rz and  r  are being calculated. 

In Eq.(16b), one may observe that some elements in matrix 2J  is infinite as r→0 

for n=1. However, if the Bessel functions in the elements are expressed by 

polynominal functions, one can conclude that the infinite terms will be cancelled out 

each other in the elements. This means that there is no infinite element in matrix 2J

for r=0.   

 

Numerical Analysis 

 

The solutions presented in the paper have been verified with Green function 

solution[10] for the case of distributed loading applied at free surface. To the cases of 

distributed loadings buried in layered half-space, two types of media have been 

chosen. One is a layer over rigid bedrock. The other is half-space. For the medium of 

one layer over rigid bedrock, the nondimensional layer thickness 
)Re(

h

h
Cs

2



 =0.5, 

in which Cs  is shear wave velocity in the layer,  is frequency, and h is thickness 
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of the layer. For the two types of media, the distributed loadings are buried at 

nondimensional depth of 
)Re(

h

h
i

i
Cs

2



 =0.15, Poisson ratio is 0.33, and hysteretic 

damping ratio is 0.05. In order to investigate the concentration effect of the loadings, 

three distributed areas are selected. Referring to Fig.1(a), first case is 1r  =0.125 and 

2r =0.375 (ε=0.125) in which 
)Re(

2
r

r
1

1
Cs





 and 
)Re(

2
r

r
2

2
Cs





 ; second case is 1r

=0.2 and 2r =0.3 (ε=0.05); third case is 1r =0.225, 2r =0.275 (ε=0.025). In order to 

keep the magnitude of total load equal among the three cases, the 

intensities are 1.0 for case 1 (ε=0.125) , 2.5 for case 2.5 (ε=0.05) and 5.0 for 

case 3 (ε=0.025). Figs.2 show the real and imaginary parts of stress component σzz 

on the horizontal plane at ih =0.15 for the case of one layer system with symmetric  

Fourier component n=0. The nondimensional depth ih =0.15 means the horizontal  

plane is the interface where external loading is applied. In the figures, one can observe  

six curves representing the results at the surfaces of both upper and lower domains  

with ε=0.125, 0.05 and 0.025 respectively. From Fig.2(a), one can see that the  

differences between upper and lower domain surfaces only occurs at the locations  

where external distributed loading is applied, and the difference at r =0.25 are 5.0  

for case of ε=0.025, 2.5 for ε=0.05 and 1.0 for ε=0.125. These 5.0, 2.5,and 1.0 are the  

highest intensities of distributed loads for the three cases, respectively. Referring to  

Fig.2(a), one can observe that stress component in the region, where external load is  

applied, is smaller for upper domain. Also, from Figs.2(a) and 2(b), one can observe  

the stress continuity at the interface of upper and lower domains. In Fig.2(b), one can  

also see that the imaginary part of the stress component is almost the same for r ≧0.4  

for the three cases of ε=0.125, ε=0.05 and 0.0025 of both media. Figs.3 shows the  

stress component rz  on the horizontal plane of jh =0.15 and for the case of  

half-space with symmetric Fourier component n=1. From the figures, one can observe  

the similar phenomena to that of Figs.2. One just only has to note that the stress  

component must multiply cosθ, if the location is not on θ=0 axis. Figs.(4) show the  

displacement uθ for the cases of both one layer system and half-space with jh =0.15  

and anti-symmetric Fourier component n=0 . From Fig.4(a), one can see that the  

maximum displacement occurs around the location where highest intensity of loading  
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is applied. This phynomenern can also be observe in Figs2.(a)and3(a). The  

displacement values are getting close to each other as r is farther away from the  

location where the distributed loading is applied for the three cases of ε=0.125,  

0.05,and 0.025. Also, the difference between the results for the cases of one layer  

system and half-space is getting apparent as r become farther. Figs.5 show the  

displacement component zu for the cases of both one-layer system and half-space  

with ih =0.15 and symmetric Fourier component n=1. From Fig.5(a), one can see that  

the displacement is getting closer for the case of one-layer system or half-space, if r   

becomes farther. The difference among the cases of ε=0.125, 0.05 and 0.125 only  

occurs at region where external loading is applied. From Figs 2-5, one also can  

observe that the peak values is higher as the distributed loading is more concentrated. 

  In order to know the effect of trunction of integrals in equations like Eq.(15), Table 

1 shows the results of rz for the case of one-layer system with ih =0.15 and ε=0.05. 

In the table, nondimensional wave number 
uk  is employed to replace the infinite  

integration limit (∞) in equations like Eq.(15). The nondimensional wave number is 

nondimemsionalized by shear wave velocity and frequency; i.e 
uk =





2

kCs

.  Table 

1 only shows the results at surface of lower domain. From the table, one can observe 

that the results for 
uk =2000, 4000 and 6000 are the same up to three figures. This 

means that 
uk =2000 to replace infinite integration limit is good enough for 

numerical calculations. Although the numerical results for displacement components 

are not shown, the precision is even much better. For example, in this case, the 

number of significant figures is five.  

 

Concluding remarks  

 

After thorough numerical investigations , the presented solution is very efficient in 

computation. The solutions presented in the paper can be easily employed to solve the 

problem of elastodynamic by fundamental solution method . The advantage of the 

presented solution is that no singularity situation could occur in the solution process . 
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Appendix 

 

  The matrix 1κ  in Eq. (2) can be expressed as follows : 

  
1 1 1κ = κ κ                                                     (A-1) 

where 

j

j

k -v 0

= -v k 0

0 0 1

 
 
 
  

1κ                                                (A-1a) 

and 

j

j

k v 0

= v k 0

0 0 1

 
 
 
  

1κ                                                  (A-1b) 

The matrix 2κ  in Eq. (4) can be expressed as follows : 

  
2 2 2κ = κ κ                                                    (A-2) 

where 

j

j

2 2

j j j β

2 2

j β j j

j jj

-2kG v G (2k - k ) 0

= G (2k - k ) -2kG v 0

0 0 -G v

 
 

  
 

  

2κ                            (A-2a) 

and 
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j

j

2 2

j j j β

2 2

j β j j

j j

2kG v G (2k - k ) 0

= G (2k - k ) 2kG v 0

0 0 G v

 
 

  
 

  

2κ                            (A-2b) 

in which 
j

2
2

β 2

gj

ω
k =

c
, 

jG is shear modulus of 
thj layer. 

  The transfer matrix ja  in Eq. ( 5 ) can be expressed as follows : 

 
 
 

11 12

j

21 22

a a
a =

a a
                                                  (A-3) 

where 

j

j j

j

j j

2
2 2

β j2 2

jβ β

2
2 2

j β2 2

jβ β

2k k SH
(CH - CH )+CH (2k - k ) - 2v SH 0

vk k

k SH 2k
= -2v SH +(2k - k ) CH - (CH - CH ) 0

vk k

0 0 CH

  
      

  
 

  
     

 
 
 
 

11a

         (A-3a) 

                                                                 

 

 

j j

j j

2

j2 2

jj β j β

2

j2 2

jj β j β

j j

1 SH -k
v SH - k CH - CH 0

vG k G k

k 1 SH
= CH - CH v SH - k 0

vG k G k

SH
0 0 -

G v

  
     

  
 

  
      

 
 

 
 

12a

         (A-3b) 

 

                                                              

j

j

j j j

j

j

j j j

2 2 2
2

β j 2 2

j β2 2 2

jβ β β

2 2 2
2

βj 2 2

β j j2 2 2

jβ β β

j j

(2k - k ) -2kG-4k SH
G v SH + (2k - k )(CH - CH ) 0j vk k k

(2k - k )2kG SH 4k
= (2k - k )(CH - CH ) G - v SH 0

vk k k

0 0 -G v SH

  
  

   
 

  
    

   
 

  
 
  

21a

        (A-3c) 
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j

j j

j

j j

2
2 2

j β2 2

jβ β

2
2 2

j β2 2

jβ β

2k k SH
(CH - CH )+CH 2v SH - (2k - k ) 0

vk k

k SH 2k
= 2v SH - (2k - k ) CH - (CH - CH ) 0

vk k

0 0 CH

  
      

 
  

     
  

 
 
 
 

22
a

        (A-3d) 

 

in which 
j jSH = sinhν d , 

j jSH = sinhν d  , 
j jCH = coshν d , and 

j jCH = coshν d  . 
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Table 1:Comparisons for different upper limits to replace infinite limit 

           

r  

Ku=2000   

Re(τrz )     Im(τrz ) 

Ku=4000    

Re(τrz )      Im(τrz ) 

Ku=6000    

Re(τrz )       Im(τrz ) 

0 
-8.2228E-03 -2.8991E-02 -8.0849E-03 -2.8991E-02 -8.0966E-03 -2.8991E-02 

0.05 
-6.9639E-03 -2.8770E-02 -6.9754E-03 -2.8770E-02 -6.9764E-03 -2.8770E-02 

0.1 
-3.7614E-03 -2.8099E-02 -3.7790E-03 -2.8099E-02 -3.7794E-03 -2.8099E-02 

0.15 
7.2696E-04 -2.6952E-02 7.2346E-04 -2.6952E-02 7.2367E-04 -2.6952E-02 

0.2 
6.0444E-03 -2.5293E-02 5.3113E-03 -2.5293E-02 5.0636E-03 -2.5293E-02 

0.25 
5.0236E-01 -2.3109E-02 5.0386E-01 -2.3109E-02 5.0436E-01 -2.3109E-02 

0.3 
3.8542E-03 -2.0455E-02 3.1113E-03 -2.0455E-02 2.8633E-03 -2.0455E-02 

0.35 
-2.6027E-03 -1.7463E-02 -2.6095E-03 -1.7463E-02 -2.6097E-03 -1.7463E-02 

0.4 
-7.1666E-03 -1.4301E-02 -7.1725E-03 -1.4301E-02 -7.1728E-03 -1.4301E-02 

0.45 
-1.0149E-02 -1.1121E-02 -1.0149E-02 -1.1121E-02 -1.0149E-02 -1.1121E-02 

0.5 
-1.1605E-02 -8.0392E-03 -1.1602E-02 -8.0392E-03 -1.1603E-02 -8.0392E-03 

0.55 
-1.2016E-02 -5.1423E-03 -1.2015E-02 -5.1423E-03 -1.2015E-02 -5.1423E-03 

0.6 
-1.1790E-02 -2.4965E-03 -1.1791E-02 -2.4965E-03 -1.1791E-02 -2.4965E-03 

0.65 
-1.1165E-02 -1.5093E-04 -1.1166E-02 -1.5093E-04 -1.1166E-02 -1.5093E-04 

0.7 
-1.0268E-02 1.8603E-03 -1.0267E-02 1.8603E-03 -1.0267E-02 1.8603E-03 

0.75 
-9.1732E-03 3.5186E-03 -9.1724E-03 3.5186E-03 -9.1725E-03 3.5186E-03 

0.8 
-7.9463E-03 4.8204E-03 -7.9465E-03 4.8204E-03 -7.9466E-03 4.8204E-03 

0.85 
-6.6482E-03 5.7760E-03 -6.6487E-03 5.7760E-03 -6.6488E-03 5.7760E-03 
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Figs.1: total system of layered half-space and 
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Figs.2: stress component σzz for the case of one layer over rigid 

bedrock, 15.0
i

h and n=0   
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Figs.3: stress component τrz for the case of half-space, 15.0
i

h  

and n=1    
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Figs.4: Displacement component uθ for the cases of one-layer 

system and half-space, 15.0
i

h  and n=0 
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Figs.5: Displacement component uz for the cases of one-layer 

system and half-space, 15.0
i

h  and n=1 
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1 INTRODUCTION 
 
Due to urban development and economic necessi-
ty, tall building becomes an solution for the con-
centration of population. As the building is getting 
taller, the technique to withstand the horizontal 
loadings induced by earthquake and wind is more 
demanding. To resist the horizontal loading, many 
structural systems are available such as large-scale 
bracing, core, diagrid, outrigger, framed tube 
structures and others as explained by Ali and 
Moon(2007).  

Among these structure forms, framed tube 
structure has the advantage of arranging all the re-
sisting component at the perimeter of the building. 
This makes the components more efficient to re-
sist the overturning moment caused by horizontal 
loading. The concept of tubular structure was first 
proposed by Khan and Amin (1973). However, 
the disadvantage of tubular structure is the shear-
lag problem. The shear lag will reduce the effi-
ciency of the components . Therefore, bundle tub-
ular structure is introduced as explained by Ali 
and Moon (2007) in order to relieve the problem 
of shear lag. Wang (2012) has presented the typi-
cal shear lag phenomenon in Fig. 1 for a 3x3 bun-
dle tubular structure with some modular tubes 
curtailed at the heights of 400 m and 800 m. In 
the figure, symbol I is relative moment of inertia 
of cross sections of spandrel beam. However, for 
the higher story, Singh and Nappal (1994) have 
shown that negative shear lag will occur. The typ-
ical negative shear lag phenomenon is shown in 
Fig.2 for the 3x3 bundle tubular structure by  
Wang ( 2012 ). This means that the axial stress of  
 
 

the interior column in the flange frame is larger 
than that of the exterior column. By observing 
Figs. 1 and 2,one can conclude that as the moment 
of inertia of cross section of spandrel beam ( I ) 
becomes larger, the effect of shear lag will be re-
duced .As the effect of shear lag is diminishing, 
the tubular phenomenon becomes more apparent. 
This can be observed in Fig. 3. In the figure, the 
vanishing of shear lag effect, as seen in Figs.1 and 
2, will make the horizontal stiffness of the building 
larger. This means the lateral displacement of the 
building subjected to horizontal loading is re-
duced.  

In order to mitigate the shear lag problem, a 
pyramid-like tubular structural form is suggested 
for tall buildings. The pyramid-like tubular struc-
ture is defined as the tubular structure with gradu-
ally reduced floor area through the height of floor. 
Since the floor area is reduced through the height, 
the periphery columns have to be inclined accord-
ingly. The inclined columns can balance part of 
horizontal load directly. This could also mitigate 
the shear lag problem. 

The paper will investigate the behavior of the 
pyramid-like tubular structure by changing the rel-
ative stiffness of spandrel beams to periphery col-
umn, and the effectiveness of the structure type 
for withstanding horizontal load. Also, the shear 
lag phenomenon for the structural type will be 
discussed. The analysis program SAP 2000 will be 
employed to model and analyze the structures. In 
the analysis model, only 3-D beam elements are 
used and rigid zone at beam-column joints is as-
sumed. 
 
 
 

 

Parametric Study of Pyramid-like Tubular Structure 

 

Gin-Show Liou & Heng-Chih Kuo 
Department of Civil Engineering, National Chiao Tung University, Hsin-Chu, Taiwan 30049 

 
 

 

 
 
ABSTRACT: Framed-tube structure is a generally used structural type for tall buildings. Its basic form 
is closely spaced columns connected with deep spandrel beams at the periphery of building structure. 
This structural type is very efficient for resisting horizontal ( wind ) load. However, Shear lag phenome-
non is the main cause to reduce the effectiveness of tubular structure. Therefore, reducing shear lag ef-
fect become a challenge to design a framed-tube structure. The paper will study the behaviors of pyra-
mid-like tubular structure, which could effectively soothe the shear lag problem. 
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Fig. 1 Typical shear lag phenomenon for compressional 

flange frame at height 0m (Wang 2012) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Typical negative shear lag phenomenon  for com-

pressional flange frame at height 200m(Wang2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Typical lateral displacement (Wang 2012) 

 

2 NUMERICAL ANALYSIS 
 
In order to study the behavior of pyramid-like 
tubular structure, the building structure shown in 
Fig. 4 is assumed. In the figure, the base of the 
structure is 240 m × 240 m and the height is 1200 
m. This means the inclination of columns at pe-
riphery of the structure is 1/10 in the horizontal x 
and y directions. The story height is 5 m. This 
leads to 240 stories for the structure. The building 
code of Taiwan (2006) is adopted to calculate the 
horizontal wind load. The wind pressure on the 
building is shown in Fig. 5. In the figure, the wind 
pressure is calculated by assuming 5% damping 
ratio for the structure.  
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  Computer program SAP2000 is employed to 
model the pyramid-like structure. In the model, 
only beam element is used to model columns and 
spandrel beams, rigid diaphragms for all the floors 
are assumed, and the option of rigid zones at 
beam-column connections is selected. The 
members for the four corner columns are circular 
tubes with 200 cm in diameter and 6 cm, 8 cm or 
10 cm in thickness. The members for the other 
periphery columns are 100cm × 50cm rectangular 
tube with 6 cm, 8 cm or 10 cm in thickness. In 
order to keep total area of corss sections of 
columns constant at periphery of the structure, the 
spacing of the columns is 3 m for the thickness 6 
cm, the spacing of the columns is 4 m for the 
thickness 8 cm, and the spacing of the columns is 
5 m for the thickness 10 cm. Three types of 
member are selected for the spandrel beams. The 
cross sections of the three types of beams are 
shown in Fig. 6. Therefore, one totally has 9 cases 
( 3 different cross sections of spandrel beams 
times 3 different spacing of periphery columns ) to 
be studied. In the study, the vertical loading 
( gravity loading ) is not taken into account. 
Therefore, only periphery columns and spandrel 
beams are modeled in Fig. 4 to resist the 
horizontal wind pressure shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Pyramid-like tubular building structure 
 
 

The lateral displacement due to the wind load 
of Fig. 5 is shown in Fig. 7. In the figure, the 
symbol 3m-1 represents the case with 3 m column 
spacing and spandrel beam type No. 1 of Fig. 6, 

and the other similar symbols ( 3m-2 … etc. ) rep-
resent the corresponding cases. From Fig. 7, one 
can observe the phenomenons as follow : 
( 1 ) Stiffer spandrel beam will make the lateral 
displacement smaller. For examples, the sways for 
the cases 3m-3, 4m-3 and 5m-3 are smaller, while 
compared to the corresponding cases 3m-2, 4m-2 
and 5m-2, and 3m-1, 4m-1 and 5m-1, respective-
ly. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5 Design wind pressure by building code of Tai-

wan(2006) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Cross sections of spandrel beams  
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( 2 ) If the column area is more evenly distributed 
around the periphery, the sway is smaller. For ex-
amples, results for the case 3m-1 is smaller than 
that for the cases 4m-1 and 5m-1. 
( 3 ) However, the maximum lateral displacement 
at top of the building structure seems entangled 
for the 9 cases. 

Fig. 8 shows the tensile stress of the columns 
of flange frame at height 0 m. In the figure, one 
can see that the curves for shear lag phenomenon 
can be divided into 3 groups for the 3 types of 
spandrel beams shown in Fig. 6 respectively. For 
stronger spandrel beam, the shear lag effect is 
lesser. For example, the shear lag phenomenon is 
lightest for the  strongest spandrel beam ( Type 
No. 3 in Fig. 6 ). However, the effect of evenly 
distributed column area seems not so obvious to 
reduce shear lag phenomenon. This can be ob-
served by comparing the results for cases of 3 m 
spacing to that for the corresponding cases of 4 m 
and  5 m spacings. 

Figs. 9 and 10 show the tensile stress of col-
umns at heights 200 m and 600 m respectively. 
From these two figures, one can observe that neg-
ative shear lag phenomenon does not occurs for 
all 9 cases. As a matter of fact, there is no nega-
tive shear lag observed along the height of the 
building, as one examines all the column stress. 
This could be the effect of inclination of columns. 

3 CONCLUDING REMARKS 
 
The pyramid-like structural type is suitable for  
super tall building. It has the advantages to effec-
tively reduce shear lag phenomenon along periph-
ery columns and lateral displacement along the 
height of building. Also, this structural type can be 
easily combined with other structural forms, e.g. 
large scale bracing and outrigger structures, to re-
sist horizontal wind load. 
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Fig. 7 Lateral displacement due to wind load 
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Fig. 8 Tensile stress of columns of flange frame at height 

0 m( 1st story) 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Tensile stress of columns of flange frame at height         

200 m 
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Fig. 10 Tensile stress of columns of flange frame at height         

600 m 
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四、建議 

參加國際會議不一定只參加大型會議，如小型且專門某一領域之會議，反而與國際知名的學者互動機  

會較多。所以有些專門領域之會議亦應鼓勵參加。 

 

五、攜回資料名稱及內容 

(1)Conference Proceedings(此為每篇文章只有二頁之長摘要(long abstract)) 

(2)CD 之 Conference Proceedings(此為每篇完整之文章) 
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