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® <~ 4 % . The paper is to deal with the problem of the response
of stratified half-space subjected to an arbitrary
distributed loading on an axial symmetric area buried
in stratified half-space. Except boundary element
method, the response to a force buried in a
stratified half-space is rarely dealt with. However,
Green function employed in boundary element method
will creat singularity situation at the location of
source point. The presented method can avoid the
singularity situation, since the external loading is
not a concentrated load and is arbitrarily
distributed over an axial symmetric area buried in
stratified half-space.
In the process of the solution, the arbitrarily
distributed loading can be decomposed into a Fourier
Series in 6 -direction and piecewise linear
distribution in r-direction is assumed for each
Fourier component. Then the wave equations in
cylindrical coordinates are directly solved using the
technique developed by the author. The solution will
be an integral of Bessel function with respect to



B Mg

wave number. The advantage of the method will be that
singularity problem can be avoided.

Since the distributed loading is piecewise linear,
one just need to solve the problem for a triangular
distribution on an axial symmetric area and then sums
up all the solution for all the triangular
distribution . This summation will be the solution for
arbitrary distributed loading. Some numerical results
for shrinking the distributed area will be given to
show the concentrated effect of the distributed
loading.

Wave Propagation, Analytic Solution, Green Function
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Abstract

Keyword: Wave Propagation, Analytic Solution, Green Function

The paper is to deal with the problem of the response of stratified half-space
subjected to an arbitrary distributed loading on an axial symmetric area buried in
stratified half-space. Except boundary element method, the response to a force buried
in a stratified half-space is rarely dealt with. However, Green function employed in
boundary element method will creat singularity situation at the location of source
point. The presented method can avoid the singularity situation, since the external
loading is not a concentrated load and is arbitrarily distributed over an axial
symmetric area buried in stratified half-space.

In the process of the solution, the arbitrarily distributed loading can be decomposed

into a Fourier Series in B-direction and piecewise linear distribution in r-direction is

assumed for each Fourier component. Then the wave equations in cylindrical
coordinates are directly solved using the technique developed by the author. The
solution will be an integral of Bessel function with respect to wave number. The
advantage of the method will be that singularity problem can be avoided.

Since the distributed loading is piecewise linear, one just need to solve the problem
for a triangular distribution on an axial symmetric area and then sums up all the
solution for all the triangular distribution . This summation will be the solution for
arbitrary distributed loading. Some numerical results for shrinking the distributed area
will be given to show the concentrated effect of the distributed loading.



Introduction

Ground vibration due to near-by sources has been paid attention to over past
several decades. Especially, for the sensitive facility and high-tech productions
equipment, this vibrations is annoying. Therefore, how to predict the vibrations
become an important subject. Wood and Jedele [1] have collected some observed data
and deduced them into a simple formula expressing attenuation phenomenon of
ground vibrations in term of soil damping and distance between source and
observation locations. From more theoretical aspects, Sheng et al. [2] and Krylou [3]
have employed Euler beam theory to model whole track including sleepers and ballast
and then to solve the problem of moving train. Kaynia et al.[4] have proposed a more
sophisticated analysis model, which takes dynamic interaction into account, to
evaluate ground vibration induced by passing trains. Moreover, Karlstrom [5] has
employed a refined semi-analytic model to investigate the effect on ground vibration
due to accelerating train.

Most of the above analysis model, finite element or boundary element methods are
used to model half-space medium or layered half-space medium. Regarding analytical
approach to evaluate ground vibration due to a specific source, Apsel and Ruco [6]
have calculated the vibrations at the locations on half-space medium due to a point
source (Green’s Function). Vostroukhov [7] et al. have employed integral transform
method to obtain ground vibration in layered half-space due to a buried uniform load
at a circular area.

Also, Kausel and Peer [8] has employ layer elements to obtain Green function for
layered medium. Green function has been the fundamental solution for the boundary
element method. However, the singularity situation occurs at the location of source
point. The major task of boundary element method is to deal with the singularity
problem. The paper is trying to obtain the solution for distributing the point
(concentrated) load to a small area. Therefore, the singularity problem will disappears.

In the solution process, the distributed loading on an axial symmetric area can be
decomposed into an infinite series of Fourier components with respect to azimuth. For
each Fourier components, triangular distribution in r -direction is assumed.

To solve the problem mathematically, the whole layered half-space medium is
divided into two domains (upper and lower domains), the upper domain is the domain
above the level where the external loading is applied, and the other one is the lower
domains which is below the level. For each domain, the technique of decomposing the
loading, which is developed by Liou [9], is employed. The decomposed loading will
automatically match the forms of boundary values of general solutions of three
dimensional wave equations in cylindrical coordinates for the layered stratum. Then,



the boundary conditions of free surface , attenuation phenomenon, and the continuity
conditions of displacement and stress components at the interface of the two domains
(above and below the level) are imposed to obtain the solution .

The analytical expression for vibration at a specific location in a layered medium
will end up with a form of semi-infinite intergration with respect to wave number K,
and Rayleigh singular pole existing in the integration path if there is no material
damping in the medium. However, if material damping is always assigned in the
medium, the singular pole will move away from intergration path. And, from the
decaying nature of the integrand with respect to wave number K as proven in Liou’s
work [10], the vibration can be calculated by integration only up to a certain upper

limit ku without losing accuracy.

The numerical results for the cases of equal magnitude of total loading with
different distribution areas will be compared each other. This will show the
phenomenon of variation of stress and displacement components around the different
distribution areas of the total loading. The solution should be close to Green function
solution as the distribution area getting smaller. However, no singularity situation like
that in Green function solution at source point will occur in the presented solution.

Analytical Solutions For Dynamic Loadings In Layered Medium

The general solution of the differential equations for wave propagation in
cylindrical coordinates is independently found for each layer in layered medium. The
displacement and stress continuity conditions at the horizontal interfaces in layered
system are then imposed for further expressing the displacement and stress fields in
terms of the prescribed dynamic loadings. The total system of prescribed dynamic
loadings applied in layered half-space is shown in Figs.1. In Fig.1(a), the shaded area
is the locations where dynamic loading is applied. Fig.1(b) shows the distribution of
the dynamic load in r-direction for each Fourier component. The prescribed dynamic
loadings on axially symmetric area can be expressed in cylindrical coordinates in
terms of Fourier components with respect to azimuth as follows :

- () cos(né)
7 (r.0) fre sin(nd)
rz\1 _ o P _
Gu(r,0) e =) 52(0{:;((29))} et n<r<r,,z=h 1)
Ta(r.0) "~ n cos(né)
_T&(r){sin(ne)}_

where superscript N denotes n" Fourier component in the series; « Iis frequency ;
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n—-nr =2¢ .

Since the time variation e appears on both sides of the equation, it will be
omitted hereinafter. For the cases of dynamic loadings applied at arbitrary area, the
loading can be expressed by the summation of several axial symmetric areas in
Eq.(1) .

Since the external load is applied at level i in Figl(a), the domain is divided into
two domains. One is the domain above level i and the other is the domain below level
I. One can consider the domain below level i first. As show in Fig.1(a), the general
differential equations for wave propagation in a particular layer j with harmonic
excitation can be obtained using the technique separating the dilatational wave from
the rotational wave . And the technique of separation of variables is employed to solve
the independent differential equations for the dilatational wave and the rotational
wave. After combining the solutions for the dilatational and the rotational waves, the
general solution of the differential equations of wave propagation for n"™ Fourier
component can be expressed in the matrix form as follows :

cosné cosnf
u(rz) | . j [ , j 0 0
sinng sinnb
u,(r,z) C(-)Snﬁj 0 [C(_)SHQ] 0 Jx,eA )
sinng sinnb
-sinnd@ -sinnf
u,(r,z) ] 0 0 ( ]
cosné | cosnf |
or
Lu= LJk,eA
where
J ! (kr) 0 (n/r)J, (kr)
J= 0 kJn(kr) 0 (3)
(n/r)d, (kr) 0 J!(kr)

matrix &, is defined by Eq. (A-1) in Appendix,

vector A=(A, B, C, A, B,, C,)" isunknown coefficient vector determined
from the boundary conditions at the upper and the lower interfaces of the layer, 6x6

diagonal matrix e =diag(e™*, e"



v, = \jkz -(w*/ck ) V)= \/kz - (w?/c ),

C,

, and C, are compressional and shear wave velocities respectively in the layer

( ™ layer), kiswave number in horizontal direction, J_(kr) is first kind of

Bessel function of order n,and J/(kr)= [dJ_(kr)/dr] .

The stress field in the layer can be obtained by differentiating the displacement
field of Eq.(2) with respect to the corresponding variables r, zand ¢ , and then
multiplying it with constitutive matrix of elasticity. The stress components on
horizontal plane, with the azimuthal variation of matrix L (representing symmetric
and antisymmetric Fourier components with respect to 6=0 ) in Eq.(2) factored out,
can then be expressed as follows :

T,(7,2)

t=<0,(rz)=JIKk,eA 4

T, (1,2)

where matrix &, is defined by Eqg.(A-2) in Appendix.

Since the unknown coefficients in vector A are determined from the boundary
conditions of the layer, the displacement and the stress fields of Egs.(2) and (4) can be
expressed in terms of the unknown displacement and stress components at the lower
interface of the layer [9,11]. Moreover, the displacement and stress components at the
upper interface can be combined together and written in terms of the displacement
and stress components at the lower interface as follows [9,11]:

-1
YJ_leaJE Yj (5)
where 6x6 matrix E =diag(J,J)in which Bessel matrix J is shown in Eq.(3),
transfer matrix a; = ;ce'l(dj ) is defined by Eq.(A-3) in Appendix in which matrix
k=[xl, K ]T , diagonal matrix e(d; )=e|_, inwhich d;is the thickness of the

layer,and Y;_1 and Y; are the unknown displacement-stress vectors at the upper
j j

and the lower interfaces of the layer, respectively.
Consider the total lower domain shown in Fig.1. For a given layer in the system,
Eq.(5) shows that the displacement-stress vector at the upper interface can be



expressed in terms of the displacement —stress vector at the lower interface. Therefore,
by imposing the displacement and stress continuity conditions at the horizontal
interfaces from the first top layer down to the half-space layer, one can obtain the
displacement-stress vector at the surface of the total system in terms of the
displacement-stress vector at the surface of the half-space layer as expressed by

Eq.(6).
Y; = Eaj,18j,5...aM E Yy = ETE 1Yy (6)

Consider the half-space layer in Fig.1 alone. The general solutions of differential
equations of wave propagation and the stress field in the half-space layer are similar
to Egs.(2) and (4) respectively except that upward propagating reflection waves do
not exist. The displacement-stress vector at the surface of the half-space layer can
then be written as

ul\/l
Yy :{ }: Ex'A’ (7)

M
. L . . .
where matrix x'= [lcf , x;T] in which submatrices x; and &, are defined by

Eqgs(A-1a) and (A-2a) in Appendix respectively, and A’=(A,B,,C,)" is unknown

coefficient vector determined from the boundary conditions at the surface of the
half-space layer.

Substituting Y,, in Eq.(7) into Eq.(6) , Eqg.(6) can be written as

e T R
i 21 22 2

where T, ~ T,, aresubmatrices of matrix T in Eq.(6). After some matrix
manipulations of eliminating the unknown vector A’, one can obtain the

displacement vector U; in terms of the stress vector {; .

! ! ’ !/ _1 —1 —1
U = J(Tyqn] +Tyor (Togrey + Toprh ) 737t = JQI (9)
t, =JQ 1y, (%)

If the layered medium has a rigid lower boundary, then u,, =0 in Y,, of Eq.(6).

9



This leadsto Q =T,,T,, for Eq.(9).

Now, consider the upper domain(above level i ). The derivation is similar to the
derivation for lower domain (below level i) above (Egs.4-9). But the boundary
condition at is traction free for free surface.

Therefore, the displacement-stress vector at free surface can be expressed as

Yo =Ea;l---a tE7YY, =ETEYY; (10)
or

| [3 0Ty T [3 0T u
{tO}{O J}{le 1722}{0 J} {t—i } (102
Applying the boundary condition of free surface t,=0, one can obtain

fi =—dT, T d 'y, (11)

U =-JT5 T 7', (11a)

By comparing fi in Eq.(11) and t; tin Eq.(9), one can say that t; - t; must be equal
to n™ component of external load in Eq.(1) due to the stress continuity. This can be

expressed as

ti _ti :tn (12)
where tn =0, 750, 7O inEq.q)

As shown in Fig.1(b), the external loadings are assumed to be triangularly distributed.
Thus, the loading distribution in r-direction can be expressed as follow;

7y =h(nNp, a7, =h(g,and 74 =h(r)s (13)
where
1+ 170 g _e<r<r
&
r-rg .

h(r)=<1- if h<r<p+e¢

& . (13a)

0 otherwise

10



rn+r
R
technique developed by Liou [9, 11] is employed to decompose the loadings in
Egs.(13). And after some mathematical manipulations as shown in Liou’s work[9],
one can obtain the following equation.

, P, 9 andS are intensities of there kinds of distributed loadings. The

z_'rr; - - Dn+l + Dn—l 0 Dn+1 + Dn—l p "

r =|a"|= LJ 0 D, 0 q |dk = IOJDPdk (14)
z_-enz Dn+1 + Dn—l 0 - Dn+l + Dn—l S

where

r2 r
Dpa= |, 5 Ina(khXr)

r2
Dy = | rIn(khXr) (142

and
r2 r
E%_1=j; §Jn4ﬂk0h0xw

Now, one can employed Eq.(12) by substituting Egs.(9a), (11) and (14) into
Eq.(12) ,one can obtain

-1
00 , , , 1 -1+
Uj :Io J[(T21"1 +Toom5 NT1ax1 +T1ow5) +T22T21] DPdk (15)

After displacement vector U =(ur, us, Ug)T has been obtained, one can employ

T

Egs.(9a) and (11) to calculated the stress components t; =(rrz, G377 rgz) and

ti =T Tur T )T at level i for lower and upper domains in Fig.(1),

respectively .

Since the displacement vector U; and stress vectors tj and {j have been

obtained , the displacement components and stress components on every horizontal
plane in both domains can be calculated by using the formula similar to Eqs.(10) or
(6). These formula can be derived easily.

For the stress components on the vertical cylindrical surface, one can employed the
equations derived in references 9 and 11.

11



Trz leJ71 Oz +J2J71 Uz (16)
Tro e "o
where
0 —kikn O
, n
L=k 0 a0 (162)
0 0 0
— , 2 |
ZG(—J”(kr)+n—23n(kr)) 0 ZG(EJg(kr)—%Jn(kr)]
. r r
J, = 0 0 0 16b
N, HONLES e
26| ~Ji(kn) 53k} | 0 2G( 04 o (k)
" ;2 r r’ 2

matrix J is expressed in Eq.(3), Gisshear modulusand u,, U,, Uy, 7,

o, and Tg are the displacement and stress components at horizontal plane of the
same locations where o,,, 7T and 7,y are being calculated.

In Eq.(16b), one may observe that some elements in matrix J, is infinite as r—0

for n=1. However, if the Bessel functions in the elements are expressed by
polynominal functions, one can conclude that the infinite terms will be cancelled out

each other in the elements. This means that there is no infinite element in matrix J,
for r=0.
Numerical Analysis

The solutions presented in the paper have been verified with Green function
solution[10] for the case of distributed loading applied at free surface. To the cases of

distributed loadings buried in layered half-space, two types of media have been
chosen. One is a layer over rigid bedrock. The other is half-space. For the medium of

one layer over rigid bedrock, the nondimensional layer thickness

inwhich Cs is shear wave velocity in the layer, @ is frequency, and h is thickness

12



of the layer. For the two types of media, the distributed loadings are buried at

h -2

. . h: = _ . . .
nondimensional depth of i Re(Cs ) =0.15, Poisson ratio is 0.33, and hysteretic

damping ratio is 0.05. In order to investigate the concentration effect of the loadings,

three distributed areas are selected. Referring to Fig.1(a), first case is I =0.125 and
0]
0 <
_ = _ Vs
I, =0.375 (=0.125) in which 1 = Re(Cs ) 2nd

27 =
2 Re(Cs) - second case is I1

=0.2 and F =0.3 (s=0.05); third case is 11 =0.225, T, =0.275 (¢=0.025). In order to

keep the magnitude of total load equal among the three cases, the

intensities are 1.0 for case 1 (¢=0.125) , 2.5 for case 2.5 (¢=0.05) and 5.0 for

case 3 (¢=0.025). Figs.2 show the real and imaginary parts of stress component 6;;

on the horizontal plane at h; =0.15 for the case of one layer system with symmetric
Fourier component n=0. The nondimensional depth h; =0.15 means the horizontal
plane is the interface where external loading is applied. In the figures, one can observe
six curves representing the results at the surfaces of both upper and lower domains
with €=0.125, 0.05 and 0.025 respectively. From Fig.2(a), one can see that the
differences between upper and lower domain surfaces only occurs at the locations
where external distributed loading is applied, and the difference at I =0.25 are 5.0
for case of €=0.025, 2.5 for €=0.05 and 1.0 for £=0.125. These 5.0, 2.5,and 1.0 are the
highest intensities of distributed loads for the three cases, respectively. Referring to
Fig.2(a), one can observe that stress component in the region, where external load is
applied, is smaller for upper domain. Also, from Figs.2(a) and 2(b), one can observe
the stress continuity at the interface of upper and lower domains. In Fig.2(b), one can
also see that the imaginary part of the stress component is almost the same for I =0.4
for the three cases of €=0.125, £€=0.05 and 0.0025 of both media. Figs.3 shows the

stress component 7r; on the horizontal plane of h;=0.15 and for the case of

half-space with symmetric Fourier component n=1. From the figures, one can observe
the similar phenomena to that of Figs.2. One just only has to note that the stress
component must multiply cos #, if the location is not on 6=0 axis. Figs.(4) show the

displacement uj for the cases of both one layer system and half-space withh;=0.15

and anti-symmetric Fourier component n=0 . From Fig.4(a), one can see that the
maximum displacement occurs around the location where highest intensity of loading

13



is applied. This phynomenern can also be observe in Figs2.(a)and3(a). The

displacement values are getting close to each other as I is farther away from the
location where the distributed loading is applied for the three cases of €=0.125,
0.05,and 0.025. Also, the difference between the results for the cases of one layer

system and half-space is getting apparent as I become farther. Figs.5 show the
displacement component U, for the cases of both one-layer system and half-space

with h; =0.15 and symmetric Fourier component n=1. From Fig.5(a), one can see that

the displacement is getting closer for the case of one-layer system or half-space, if T
becomes farther. The difference among the cases of €=0.125, 0.05 and 0.125 only
occurs at region where external loading is applied. From Figs 2-5, one also can
observe that the peak values is higher as the distributed loading is more concentrated.
In order to know the effect of trunction of integrals in equations like Eq.(15), Table

1 shows the results of 7y for the case of one-layer system with h;=0.15 and £=0.05.

In the table, nondimensional wave number ku is employed to replace the infinite

integration limit (o) in equations like Eq.(15). The nondimensional wave number is
kCy

nondimemsionalized by shear wave velocity and frequency; i.e ku = w . Table
2

1 only shows the results at surface of lower domain. From the table, one can observe

that the results for ku =2000, 4000 and 6000 are the same up to three figures. This

means that ku =2000 to replace infinite integration limit is good enough for

numerical calculations. Although the numerical results for displacement components
are not shown, the precision is even much better. For example, in this case, the
number of significant figures is five.

Concluding remarks

After thorough numerical investigations , the presented solution is very efficient in
computation. The solutions presented in the paper can be easily employed to solve the
problem of elastodynamic by fundamental solution method . The advantage of the
presented solution is that no singularity situation could occur in the solution process .
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Appendix

The matrix #, in Eq. (2) can be expressed as follows :

K, =[r; K] (A-1)
where
k -vi O
K=, k O (A-1a)
0 0 1
and
k v 0
k=|v, k 0 (A-1b)
0 0 1

The matrix , in Eq. (4) can be expressed as follows :
K, =[r, ;] (A-2)

where
-2ijvj GJ.(Zk2 - kjj ) 0
K, =|G j(2k2 - kjj ) -2kG jvj'. 0 (A-2a)
0 0 -G.V:

171

and
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2ijvj
Ky =| G (2K -K? )
0
wZ
inwhich ki =—
C

]

G,(2k*-k2) 0

0

2kG ,v;

0
G.v!

1]

G, is shear modulus of " layer.

The transfer matrix a; in Eq. (5) can be expressed as follows :

a,, a
a] :|: 11 12j|
aZl a‘22
where
B 2
2'2 (CH -CH)+CH’ kz[(2k2 k2 yoH . 2V/SH'
5 Ky, V; '
’ 2
a,=| % |-2vsH+(K?-k2 )y cH -2 (cH -cH)
11 2 j i ’ 2
k/sj ' Vj k/f’l
0 0
= [v;SH’—kZSHJ K (CH-cH")
G;kZ G k2
a, = k2 (CH-CH") 12 [vjsH-k2 S'_,' ]
ij/))j Ik/fj j
0 0
[ (a2 2k2 -k 2) %y 2kG.
G, 4'2‘ J +(2ﬁ)SHJ 1 (2k? -k2 )(CH -CH)
k/;J k/ﬁ Vi £ J
2kG. K2 -K2 Y )
an=| 2O cn-cny o E T SHAC gy
5, Ky | Vi kg
0 0

16

jOT

0

CH'’

|

-G,;vjSH’

(A-2b)

(A-3)
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2 ’
2K” (CH -CH)+CH" K ovsH-ck?-k2)y3H 1 o
2 k2 ] Bj NV
Z Z j (A-3d)
2
a, =| | 2visH - (2k? -k2 )31 cH-2X(cH -cH) 0
k/lJ ' Vj Bj
0 0 CH'

in which sH =sinhv;d;, SH’=sinhv|d;» CH =coshvjdj,and CH'=coshv/d,-
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Table 1:Comparisons for different upper limits to replace infinite limit

Ku=2000 Ku=4000 Ku=6000
r Re(t.,) Im(t,,) Re(t,) Im(t.,) Re(t.,) Im(t.,)
O | 82008F-03 | -2.8991F-02 | -8.0849E-03 | -2.8991F-02| -8.0966E-03| -2.8991F-02
0051 6 9639E-03 | -2.8770-02 | -6.9754E-03 | -2.8770E-02 | -6.9764E-03 | -2.8770E-02
01 1 37614B-:03 | -2.8099E-02 | -3.7790E-03 | -2.8009E-02 | -3.7794E-03 | -2.8099E-02
O0-15 1 7 2606E-04 | -2.6050E-00 | 7.2346E-04 | -2.6052E-02| 7.2367E-04| -2.6952E-02
02 1 6 0444B-03 | -2.5203E-02 | 5.3113E-03 | -2.5203E-02|  5.0636E-03 | -2.5293E-02
0-2>1 5 1036E-01 | -2.3109E-02 | 5.0386E-01 | -2.3109E-02|  5.0436E-01| -2.3109E-02
03 1 38540803 | -2.0455E-02 | 3.1113E-03 | -2.0455E-02| 2.8633E-03 | -2.0455E-02
0351 ) 6027F-03 | -1.7463F-02 | -2.6095E-03 | -1.7463F-02 | -2.6097E-03| -1.7463E-02
04 1 7 1666F-03 | -14301E-02 | -7.1725E-03 | -14301F-02| -7.1728E-03| -14301E-02
0451 1 0149F-02 | -1.1121E-02 | -1.0149E-02 | -1.1121E-02| -1.0149E-02| -1.1121E-02
0> 1 1 1605E-02 | -8.0392E-03 | -1.1602E-02 | -8.0392E-03 | -1.1603E-02| -8.0392E-03
0-35 1 1 2016F-02 | -5.1423E-03 | -1.2015E-02 | -5.1423E-03 | -1.2015E-02|  -5.1423E-03
06 1 1 17908-02 | -2.4965E-03 | -1.1791E-02 | -2.4965E-03 | -1.1791E-02| -2.4965E-03
0851 1 1165602 | -1.5093E-04 | -1.1166E-02 | -1.5093E-04 | -1.1166E-02| -1.5093E-04
07 1 1.0068E-02 | 1.8603E-03 | -1.0267E-02| 1.8603E-03| -1.0267E-02| 1.8603E-03
0-731 9.1730E-03 | 3.5186E-03 | -9.1724E-03 | 3.5186E-03| -9.1725E-03|  3.5186E-03
08 | 70463F-03 | 4.8204E-03 | -7.9465E-03 | 4.8204F-03 | -7.9466E-03|  4.8204E-03
0851 6 6482F-03 | 5.7760E-03 | -6.6487E-03| 5.7760E-03 | -6.6488E-03|  5.7760E-03

19




---10
. Y T
WZ%J T, gﬁiﬁifiii/
i &EeIEB P o hl
////’:4// 7, “ ///// \/:\\\\\
j
M- T -
(a) T —
Half-space
- A
1_ei|:':llt
F11rrr11%
D il il -
(b) n °© S

Figs.1: total system of layered half-space and
triangular load distribution at depth h;

20



3.0

== €=0.125 upper domain
“ ——¢=0.05 upper domain

2.0

== ¢=0.025 upper domain
=@—£=0.125 lower domain
== £=0.05 lower domain

=>¢=£=0.025 lower domain

-2.0
u (a)
-3.0
0.2
fﬂ
0.0 T T T T
0 0.1 0.2 0.3 0.4 0.9
-0.2
=i=£=0.125 upper domain
-0.4
—&—£=0.05 upper domain
|ITI{UZZ } == £=0.025 upper domain
-0.6
=®—¢=0.125 lower domain
=f—£=0.05 lower domain
-0.8
=>e=£=0.025 lower domain
-1.0
-1.2
(b)
-1.4

Figs.2: stress component o,, for the case of one layer over rigid

bedrock, I’_lI =0.15and n=0
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Figs.3: stress component t,, for the case of hah‘—space,f_li =0.15

and n=1
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Parametric Study of Pyramid-like Tubular Structure

Gin-Show Liou & Heng-Chih Kuo

Department of Civil Engineering, National Chiao Tung University, Hsin-Chu, Taiwan 30049

ABSTRACT: Framed-tube structure is a generally used structural type for tall buildings. Its basic form
is closely spaced columns connected with deep spandrel beams at the periphery of building structure.
This structural type is very efficient for resisting horizontal ( wind ) load. However, Shear lag phenome-
non is the main cause to reduce the effectiveness of tubular structure. Therefore, reducing shear lag ef-
fect become a challenge to design a framed-tube structure. The paper will study the behaviors of pyra-
mid-like tubular structure, which could effectively soothe the shear lag problem.

1 INTRODUCTION

Due to urban development and economic necessi-
ty, tall building becomes an solution for the con-
centration of population. As the building is getting
taller, the technique to withstand the horizontal
loadings induced by earthquake and wind is more
demanding. To resist the horizontal loading, many
structural systems are available such as large-scale
bracing, core, diagrid, outrigger, framed tube
structures and others as explained by Ali and
Moon(2007).

Among these structure forms, framed tube
structure has the advantage of arranging all the re-
sisting component at the perimeter of the building.
This makes the components more efficient to re-
sist the overturning moment caused by horizontal
loading. The concept of tubular structure was first
proposed by Khan and Amin (1973). However,
the disadvantage of tubular structure is the shear-
lag problem. The shear lag will reduce the effi-
ciency of the components . Therefore, bundle tub-
ular structure is introduced as explained by Ali
and Moon (2007) in order to relieve the problem
of shear lag. Wang (2012) has presented the typi-
cal shear lag phenomenon in Fig. 1 for a 3x3 bun-
dle tubular structure with some modular tubes
curtailed at the heights of 400 m and 800 m. In
the figure, symbol | is relative moment of inertia
of cross sections of spandrel beam. However, for
the higher story, Singh and Nappal (1994) have
shown that negative shear lag will occur. The typ-
ical negative shear lag phenomenon is shown in
Fig.2 for the 3x3 bundle tubular structure by
Wang (2012 ). This means that the axial stress of

the interior column in the flange frame is larger
than that of the exterior column. By observing
Figs. 1 and 2,0ne can conclude that as the moment
of inertia of cross section of spandrel beam ( 1)
becomes larger, the effect of shear lag will be re-
duced .As the effect of shear lag is diminishing,
the tubular phenomenon becomes more apparent.
This can be observed in Fig. 3. In the figure, the
vanishing of shear lag effect, as seen in Figs.1 and
2, will make the horizontal stiffness of the building
larger. This means the lateral displacement of the
building subjected to horizontal loading is re-
duced.

In order to mitigate the shear lag problem, a
pyramid-like tubular structural form is suggested
for tall buildings. The pyramid-like tubular struc-
ture is defined as the tubular structure with gradu-
ally reduced floor area through the height of floor.
Since the floor area is reduced through the height,
the periphery columns have to be inclined accord-
ingly. The inclined columns can balance part of
horizontal load directly. This could also mitigate
the shear lag problem.

The paper will investigate the behavior of the
pyramid-like tubular structure by changing the rel-
ative stiffness of spandrel beams to periphery col-
umn, and the effectiveness of the structure type
for withstanding horizontal load. Also, the shear
lag phenomenon for the structural type will be
discussed. The analysis program SAP 2000 will be
employed to model and analyze the structures. In
the analysis model, only 3-D beam elements are
used and rigid zone at beam-column joints is as-
sumed.
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Fig. 1 Typical shear lag phenomenon for compressional
flange frame at height Om (Wang 2012)
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Fig. 2 Typical negative shear lag phenomenon for com-
pressional flange frame at height 200m(Wang2012)

1200 —

800 —

Height(m)

400 —

0 1 2 3
Lateral displacement(m)

Fig. 3 Typical lateral displacement (Wang 2012)

2 NUMERICAL ANALYSIS

In order to study the behavior of pyramid-like
tubular structure, the building structure shown in
Fig. 4 is assumed. In the figure, the base of the
structure is 240 m x 240 m and the height is 1200
m. This means the inclination of columns at pe-
riphery of the structure is 1/10 in the horizontal x
and y directions. The story height is 5 m. This
leads to 240 stories for the structure. The building
code of Taiwan (2006) is adopted to calculate the
horizontal wind load. The wind pressure on the
building is shown in Fig. 5. In the figure, the wind
pressure is calculated by assuming 5% damping
ratio for the structure.



Computer program SAP2000 is employed to
model the pyramid-like structure. In the model,
only beam element is used to model columns and
spandrel beams, rigid diaphragms for all the floors
are assumed, and the option of rigid zones at
beam-column connections is selected. The
members for the four corner columns are circular
tubes with 200 cm in diameter and 6 cm, 8 cm or
10 cm in thickness. The members for the other
periphery columns are 100cm x 50cm rectangular
tube with 6 cm, 8 cm or 10 cm in thickness. In
order to keep total area of corss sections of
columns constant at periphery of the structure, the
spacing of the columns is 3 m for the thickness 6
cm, the spacing of the columns is 4 m for the
thickness 8 cm, and the spacing of the columns is
5 m for the thickness 10 cm. Three types of
member are selected for the spandrel beams. The
cross sections of the three types of beams are
shown in Fig. 6. Therefore, one totally has 9 cases
( 3 different cross sections of spandrel beams
times 3 different spacing of periphery columns ) to
be studied. In the study, the vertical loading
( gravity loading ) is not taken into account.
Therefore, only periphery columns and spandrel
beams are modeled in Fig. 4 to resist the
horizontal wind pressure shown in Fig. 5.

T

=1200m |

B2=240m

N

Fig. 4 Pyramid-like tubular building structure

The lateral displacement due to the wind load
of Fig. 5 is shown in Fig. 7. In the figure, the
symbol 3m-1 represents the case with 3 m column
spacing and spandrel beam type No. 1 of Fig. 6,

and the other similar symbols ( 3m-2 ... etc. ) rep-
resent the corresponding cases. From Fig. 7, one
can observe the phenomenons as follow :

( 1) Stiffer spandrel beam will make the lateral
displacement smaller. For examples, the sways for
the cases 3m-3, 4m-3 and 5m-3 are smaller, while
compared to the corresponding cases 3m-2, 4m-2
and 5m-2, and 3m-1, 4m-1 and 5m-1, respective-

ly.

1200 —

800 —

Height (m)
|

400 —

0 200 400 600 800
Pressure ( kgf/im*2 )

Fig.5 Design wind pressure by building code of Tai-
wan(2006)

t=10cm
H=150cm
t=10cm
t=10cm
B _| cross section No.l
BE=100cm
t=10cm H=150cm
|_ __| crosssection Mo.2
B=100cm
t=10cm H=200cm
| cross section Mo 3
B=100cm

Fig. 6 Cross sections of spandrel beams
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(2) If the column area is more evenly distributed
around the periphery, the sway is smaller. For ex-
amples, results for the case 3m-1 is smaller than
that for the cases 4m-1 and 5m-1.

( 3 ) However, the maximum lateral displacement
at top of the building structure seems entangled
for the 9 cases.

Fig. 8 shows the tensile stress of the columns
of flange frame at height 0 m. In the figure, one
can see that the curves for shear lag phenomenon
can be divided into 3 groups for the 3 types of
spandrel beams shown in Fig. 6 respectively. For
stronger spandrel beam, the shear lag effect is
lesser. For example, the shear lag phenomenon is
lightest for the strongest spandrel beam ( Type
No. 3 in Fig. 6 ). However, the effect of evenly
distributed column area seems not so obvious to
reduce shear lag phenomenon. This can be ob-
served by comparing the results for cases of 3 m
spacing to that for the corresponding cases of 4 m
and 5 m spacings.

Figs. 9 and 10 show the tensile stress of col-
umns at heights 200 m and 600 m respectively.
From these two figures, one can observe that neg-
ative shear lag phenomenon does not occurs for
all 9 cases. As a matter of fact, there is no nega-
tive shear lag observed along the height of the
building, as one examines all the column stress.
This could be the effect of inclination of columns.

3 CONCLUDING REMARKS

The pyramid-like structural type is suitable for
super tall building. It has the advantages to effec-
tively reduce shear lag phenomenon along periph-
ery columns and lateral displacement along the
height of building. Also, this structural type can be
easily combined with other structural forms, e.g.
large scale bracing and outrigger structures, to re-
sist horizontal wind load.
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Fig. 7 Lateral displacement due to wind load
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Fig. 8 Tensile stress of columns of flange frame at height
0 m( 1st story)
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Fig. 9 Tensile stress of columns of flange frame at height
200 m
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Fig. 10 Tensile stress of columns of flange frame at height
600 m
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