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Abstract

In this paper, we present a systematic investigation of
the guiding characteristics of a coplanar waveguide with
periodic variation of the line profile. Based on the method of
effective didectric constant (EDC), simple formulas are
obtained and the numerical results are expressed in the form of
the Brillouin diagram, with both phase and attenuation
constants included. Furthermore, the scattering of guided
waves by a periodic structure of finite length is analyzed both
theoretically and experimentally with results in excellent
agreement, and the scattering results check very well with the
dispersion characteristics.  Thus, the method presented in this
paper provides not only a clear physica picture for
understanding the wave phenomenainvolved but also asimple
yet accurate design criterion for practical considerations.

1. Introduction

The subject of periodic structures has attracted
continuing interest in the literature [1, 2]. Due to the
mathematical complexity of treating the metallic-type
periodic structures, most of the research works in the
past have been limited to experimental studies and
simulations using various numerical methods.
Although the scattering approach to a periodic structure
of finite length is very useful for evaluating the
performance of the periodic structure, it gives the
cumulative effect of the overall structure, but not the
insight of individual physical processes involved. On
the other hand, the dispersion characteristics exhibit
clearly the interactions of space harmonics and predict
easily the locations of stopbands. In this paper, we
present a study on the class of coplanar waveguides
(CPW) with its width varying periodically aong the
waveguide axis. Specifically, we employ the method of
effective dielectric constant, based on the dominant
mode of CPW, to analyze theoretically the dispersion
characteristics for an infinite periodic CPW.
Furthermore, the dispersion characteristics are verified
by both theoretical and experimental analysis of the
scattering parameters of a periodic structure with a finite
length, and the results by different approaches are in
excellent agreement. This permits us to establish
simple criteria for practical applications of the class of
microwave planar circuits with periodic variation.

2. Statement of the problem

Fig. 1 depicts the configuration of a CPW with the width
of the center strip varying periodically along the
structure. The period of the structure is denoted by d,
and the center strip may have an arbitrary variation of its

width and its separations from the ground planes. The
relative dielectric constant and thickness of the substrate
are e;and h, respectively.  Conceptually, the continuous
variations of the edges of the strip and the ground planes
may be discretized or approximated by a piecewise
uniform profile, as shown in Fig. 1(b). In each uniform
section of the discretized structure, the method of
effective dielectric constant is employed to develop a
network of cascaded transmission lines, each with a
known propagation constant and a known characteristic
impedance[3]. In general, the CPW in Fig. 1(a) can be
reduced to a non-uniform transmission line with
periodically varying propagation constant and
impedance, k(z) and Z(z). There are many ways to
solve the problem of non-uniform transmission lines,
depending on the profile of the non-uniformity. In
particular, with the discretized structure, the input-output
relation of a period can be easily constructed, such that a
complete set of characteristic solutions for the periodic
transmission-line can then be treated naturally by the
eigenvalue problem, as will be explained in what
follows.

3.  Method of analysis

Returning to Fig. 1, we employ the building-block
approach to smplify the analysis of this boundary value
problem.  Firstly, the input-output relation of the
bifurcated PPWG, which is shown in Fig. 2, will be
congtructed by using the rigorous mode-matching
method. Secondly, the input-output relation of the
simple PPWG of finite length is well known and is
skipped here.  Finally, the field analysis of the cascaded
sub-cells will be conducted, as given below.
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Fig. 1(C) Cascade of unif orm transmission
network

A. Dispersion rel ation of
transm ssion-1ine network

a periodic

Consider a periodic transmission line consisting of a
finite number of uniform transmission-line sections in
each unit cell,, asshown in Fig. 1(c). Thetotal transfer
matrix of the unit cell can then be written in terms of
those of the constituent sections, as:
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where T; is the transfer matrix for the /” section in the
unit cell to determine the output condition from that at
the input, and is defined by:
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Here, k; is the propagation constant, Z is the
characteristic impedance, Y; is the characteristic

admittance, and d; is the length of the transmission-line

section. The total transfer matrix holds for every unit
cell; hence, the electromagnetic fields and their
propagating characteristics can be conveniently

expressed in terms of its eigenvalues and eigenvectors.

Let | be an eigenvalue of T and fbe its corresponding
eigenvector, such that they satisfy the following relation:

Tf=1f@

For such a second-order transfer matrix f the
eigenvalues are determined by the characteristic
equation:

- Tr(T)l +1=0 (3

where Tr( f) represents the trace of f and is equal to
the sum of the two diagonal elements. In arriving at the
last equation, we have made use of the fact that the

determinant of the transfer matrix f is always equal to

unity.  Therefore, the two eigenvalues of f must be
reciprocal to each other, and we may express the two
eigenvaluesin the exponential form,

= exp(- jkd) (5)
I, =exp(+jkd) (6)

where k is caled the characteristic exponent.
Evidently, | ; and | , represent the phase changes of the
forward and backward waves traveling over a period d,
respectively. The characteristic equation (5) can now
be written in the alternative form:

2coskd = Tr(T ) (7)

Thus, the characteristic exponent can now be determined
easily with the straightforward calculation of the transfer

matrix of the unit cell. Since the matrix T depends
on the frequency w, we may plot the dispersion curves
by determining k as a function of the frequency w from
the last equation. The range of wis a pass-band, if k is
real; it isastop-band, if k iscomplex. Finaly, once an
eigenvalue is determined, the two eigenvectors f; and £,
are then determined from (3) for the forward and
backward traveling waves.

B. I nput-output relation for the
periodic transm ssion |ine networks

In practice, a periodic structure contains only a finite
number of unit cells.  With the transfer matrix defined
for a unit cell, as shown above, the input-output relation
of the whole structure of p cells can be given by:
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The terminal condition at the output end may be
specified as:. V(/) = You /(/), where Y is the out

admittance. The voltage and current at the output end
can be related to the voltage at the input end, as:
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where S is supposed to be a known constant for a given
system. Evidently, in a stopband, the output voltage
and current will tend to diminish as the number of unit
cells, p, becomes very large; this results in the vanishing



transmission, as should be expected.
3. Numerical Results and Discussions

Fig. 2 shows the dispersion characteristics of a periodic
CPW with two alternating widths and lengths in a period.
The dimensions of the structure are w; = 4.1 mm,
5=0.25 mm, d; = 21 mm; and w, =2 mm, s=1.3 mm, d-
= 9 mm. The relative dielectric constant and the
thickness of the substrate used are 3.62 and 0.81mm,
respectively.  Also shown are the theoretical and
measured results for the transmission coefficient (Sy) in
Fig. 2(@) and (b), respectively, as will be further
discussed later on.  The propagation constant is
normalized to the period d/2p, and is displayed in the
form of the Brillouin diagram. The dispersion curves
of the uniform CPW is obtained by the average width of
the two alternating sections and is taken as the
unperturbed ones, as displayed in the dashed lines in the
same figure. The indices attached to the unperturbed
dispersion curves indicate the orders of the space
harmonics associated with the dominant mode of CPW.
According to the theory of mode coupling, an actual
dispersion curve of a periodically perturbed structure
should differ only dlightly from that of the unperturbed
one, except in the stopband region where the
propagation characteristics change qualitatively from a
propagating to a decaying wave. Along the
unperturbed dispersion curve for the fundamental mode,
n = 0, there are strong contra-flow interactions or
couplings resulting in stopbands around the intersections
points with those of the higher space harmonics.
Evidently from Fig. 2, the results meet the expectation of
the theory of mode coupling.

Returning to the theoretical calculation and
measurement of the transmission coefficient (S,;) of a
periodic CPW with afinite number of unit cells, we have
carried out both theoretical and experimental analysis of
aperiodic CPW for the three cases of 5, 6 and 7 periods.
The results are superimposed on the dispersion curvesin
Fig. 2(a) and (b), respectively. It is nhoted that in order
for comparison between theory and measurement, we
have taken into account the dielectric loss and conductor
loss in our numerical analysis. We observe that the
stopbands can be accurately determined from either the
dispersion curves for a periodic structure of infinite

length or the transmission coefficient of a periodic
structure of finite length. Furthermore, the increase in
the number of unit cells will enlarge the width of
stopbands;, at the same time, it will enhance the
attenuation of wave in the stopbands. Comparing the
scattering parameters between theory and measurement
in Fig. 2, we observe that they agree with each other
very well.  Furthermore, the dependence of the
attenuation constant on the number of periods checks the
simple formula in (9). Evidently, the dispersion
characteristics provide not only a clear physical picture
for understanding the wave propagation involved but
also a simple, yet accurate, design criterion for practical
design purpose.

4. Conclusions

We have presented the dispersion characteristics of
CPW with periodic variation, based on the single mode
approximation.  We have verified with excellent
agreement the stopbands by both theoretical
computations and experimental measurements of the
transmission coefficient through a periodic CPW of a
finite length. Thus, the simple model presented not
only provides the physical pictures of the wave
propagation involved but also establish a design
criterion for practical consideration.
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Fig. 2: Brillouin diagram of ainfinite length periodic CPW

and the scattering parameters (S21) of afinit length
periodic CPW (numerical simulation)
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Fig. 3: Brillouin diagram of ainfinite length periodic CPW
and the scattering parameters (S21) of afinit length
periodic CPW (measurement)
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