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In remediation of LNAPL contaminated sites, free
product recovery is the major tool for source removal
when there is a LNAPL layer on top of the groundwater
table. In the past, the modeling of free product
recovery consider LNAPL phase as a single fluid
without discriminating its components including BTEX
and MTBE. However, the dissolution and control of
BTEX and MTBE are the most critical issue of an LNAPL
contaminated site, all other components of LNAPL are
less toxic, less soluble in water, and easily
biodegraded. The objective of this proposed research
1s to use TMVOC, which can take the multiple
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component of LNAPL especially BTEX and MTBE into
account, to simulate the multi-phase extraction and
assess the relative effectiveness of free product
recovery and soil vapor extraction to control the
release rate into groundwater and recovery rate of
BTEX and MTBE. The removal of BTEX under various
layouts and vacuum of MPE wells, as well as
incorporating groundwater pumping, will be evaluated
for determination of best scheme for enhancement of
remediation effectiveness.

In this study, numerical simulations had been
performed with TMVOC, in order to assess the
influence of well location, well bottom pressure and
porosity on the efficiency of MPE. A hypothesized
aquifer of sandy soil had been assumed to receive
gasoline from oil spill from tank farms and thus to
be remediated with MPE. The results of simulation
show that the extraction well placed 10 m downstream
from spill point gives the best efficiency.
Efficiency decreases as the extraction well was
located away from that particular point, either
upstream or downstream. Furthermore, the aquifer of
which a higher porosity has been assumed shows a
better efficiency than one with lower porosity. In
addition, the efficiency of extraction exhibits a
positive correlation with the difference between well
bottom pressure and atmospheric pressure.
Nevertheless, the benefit of high negative pressure
1s obvious only in the earlier few months after which
the benefit decreases with time.

LNAPL, free product recovery, multi-phase extraction,
TMVOC, BTEX
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33 &4 - Assessment of Removal Rate Enhancement of BTEX by
Multi-Phase Extraction of LNAPLSs

ABSTRACT

In remediation of LNAPL contaminated sites, free product recovery is the major tool for
source removal when there is a LNAPL layer on top of the groundwater table. In the past, the
modeling of free product recovery consider LNAPL phase as a single fluid without discriminating
its components including BTEX and MTBE. However, the dissolution and control of BTEX and
MTBE are the most critical issue of an LNAPL contaminated site, all other components of LNAPL
are less toxic, less soluble in water, and easily biodegraded. The objective of this proposed
research is to use TMVOC, which can take the multiple component of LNAPL especially BTEX
and MTBE into account, to simulate the multi-phase extraction and assess the relative
effectiveness of free product recovery and soil vapor extraction to control the release rate into
groundwater and recovery rate of BTEX and MTBE. The removal of BTEX under various layouts
and vacuum of MPE wells, as well as incorporating groundwater pumping, will be evaluated for
determination of best scheme for enhancement of remediation effectiveness.

In this study, numerical simulations had been performed with TMVOC, in order to assess the
influence of well location, well bottom pressure and porosity on the efficiency of MPE. A
hypothesized aquifer of sandy soil had been assumed to receive gasoline from oil spill from tank
farms and thus to be remediated with MPE. The results of simulation show that the extraction well
placed 10 m downstream from spill point gives the best efficiency. Efficiency decreases as the
extraction well was located away from that particular point, either upstream or downstream.
Furthermore, the aquifer of which a higher porosity has been assumed shows a better efficiency
than one with lower porosity. In addition, the efficiency of extraction exhibits a positive
correlation with the difference between well bottom pressure and atmospheric pressure.
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Nevertheless, the benefit of high negative pressure is obvious only in the earlier few months after
which the benefit decreases with time.

Keywords: LNAPL, free product recovery, multi-phase extraction, TMVVOC, BTEX
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RS I R ¥4—ﬁ;xmaﬁfkﬁ*ﬁ Rl P g 3 R
EESVE E AT 'F ELF ’F sl e E gz FlFA kg (B 2-4) &fdk E i - & B EE
4 % ites% (Bioslurping) » P Eﬁﬁ#pqﬂp}{ “ET %ﬁ\;} TR R BT mﬁ/{;&_—‘f’f?if__%_ﬁ?
Wt T kS A R U B e -

BB TORY g Mo R B IR S RN 0 d 0w e 3§ RRG 0 w fed 13
51

Bl 2-4 2 $idpk# 247 L W(API, 1996)

~



%19\?1’{#@%,,4 SRR B TR F AR AT ) H T AN 2w E*p F
B E AR Y R

BARw e “,/]E. R 1 = A e

1 M3 P Feg R 5 (k4 B E G <103 cm/s) # #E eige B A& (< 15cm) o

2. B ToREAMNLEF 6mMe

3. Biiengd A2 ’\'W*'jz,ifri,{ﬁr% FH oo

4. FRHEWH IR FAEF AR 2T o

BEAR T LS R TR A R S P iR ’fag"z%r@f;%_rk e 17 AT 003T R 0B b F
Z AR L p iz g Bi"»»r% R nif id o Bk 8 n’vr%zws M; i&,;'—,gbqu_? (m
4ol & B LAY 24 & Fl/é'—,ﬁr vl R T J\#dr Tt G- 3t 0.1%) & v T/ E R
20 B A (blhe o) 3cem) e i%‘é:‘e% LW T *Jffé“ 7 5 R ruwrzl ]2 o
NS BB ARTERPN (dr2#) FRERE d-3em) L R iEL T P L € AT
TR F T o

2.4 &% wycer LNAPL #& 'ﬁ“\ [CR =]

Charbeneau & #p % 3 U.S. EPA B % 7 49§ R 4ocni50d 75 2 e HSSM > ¥ %% iR
s e ok cn™ %7 57 KOPT 425838 ~ 2 ’1/%\ Fond8v * OILENSE #2580 % » 73
ffeh@ BT % TSGPLUME 423038 « 28 o ip- BARN @25 B 7ok ¥ (2433 f24p)
SR Lm@ﬁiﬂ m ¥ US EPA & X 3% & %% #E(Vapor Phase) s34 # @ﬁ;]bh’/»\ N o Tt |
E RN g et P kR AT (Weaver etal., 1994) - HSSM ¥ _— 4~ % amgrsﬂ ;U
Weiedwm i B k2R TR TL B E r'v":fﬁjl’-‘l,{’fr#”f BEIR G o Hldoik e £ T 235
Bofiphsl? "I BAPDE R EALTNS = 2L EHEGVPE Y KAk #E s
s 35 o HSSM 4245 - f i* 22 LNAPL fci s » b i3 29 & & @ﬁ%“ (Kinematic Oily
Pollutant Transport (KOPT))fr OILENS #e gt & & 7|5 - B 7 "af23% » HSSM-KO » ¥ 3% k3=
Tk F kR BN - BAERF T i ehi5 4 Rk R -KOPT frOILENS 38 - e P 35 LNAPL
Feok Ap it B L it e - LigBitES L ER TR T gf_d oAt 2RI 5 e
LNAPL &8 115 23 TR 2 kR o 4ot o 282 % = 305 8 A LNAPL ehit & =
A AR TR 7R R E'?"’@ﬁ%l od 2 OILENS f e £ i £ EFF I ea > Flt# TR G0k
Ry BCFS 2 T A S R R s R e Rk o 50 feié * 3 KOPT 4o OILENS i1 2
B FF- R - 3 EBIHRYB-AHEN R85 4R B A7 2 BN
(Transient Source Gaussian Plume (TSGPLUME)) -

¥ - = 5 - Parkeretal. (1994)% % 7 ARMOS #ic & #3¢ » #8240 7 R R ¢ 50 # &
few Jz > ¥ HikE LNAPL 7 p 2A A & 56 & (Skimmer pump)4é 2=+ (&40 LNAPL & $ -k )
z_yn#s - Waddill and Parker (1997a) ¥t#c@ #8422 1 » 0 5 2 AR IRIEY BIF IR ¥
LNAPL ] fe2 3¢ o 3% i -K8id e TR i85 4o LNAPL w gz )k mi 47 o
2_ 14 Waddill and Parker (1997b)* ARMOS *# 3 » &g 33t 42 47 (Stochastic analysis)i ™= 7 -k
BB EME LNAPL wfzz 238 c B R 4 2Kk A& R I HF0 v e id & F &3 Y 5
PE2REE I 4 i}?tt%"m i T IORIT L HR ST 3 TR RN T v]zoCooper Jr.etal,
(1995) 1 = M5 T~ % $58 ARMOS #5850 w4 > 1 # F’“’h M ET s 21 W L 4 Beig e
Fow e BE P chp R B RUE A RAT R R R B E o P SRR AR
A TR F | fBgn > HER>E2VHB M v TR A 11% 0 0 _"]i_i # ¢ 9 LNAPL
15% - Charbeneau and Chiang (1995) £ ** Lenhard and Parker (1990)£2 Farr etal. (1990) 7= %
By dide » T g 507 0 kit LNAPL %3618 b @1 LA 72 NI SR KIS B BN ERE S I i €4
iR B oo

Charbeneau etal. (2000)#& &1/ B %0 w ot 5 {07 R ficgwde b 2 o f f&ﬁg 5% %
si(Vacuum enhanced systems) - # #-;% & ARMOS #p#ie { 5 fi 5 > 2 3 f20 % R 175 w g i
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e R o B AT Y R LR v T HE B E 0 MR S RIS R IRek
5w ek ,E:(Charbeneau etal., 1999, 2000) - 3z #5316 K G L 8- H e » T
2 ope )2 ARsN iR E 4 3 3V R (Charbeneau, 2003) ¥ B £ L - B IR R w T chk ¥
¥ 48 (Charbeneau, 2007; Charbeneau and Beckett, 2007) » i& 2 i B # L £ R 7 0 5 §
(American Petroleum Institute, API) & :}fr'v’v T od R g s T ;‘ °

API/Charbeneau #-3% F1H @ 0 » 35 % 7 o 87 3] crdfnk S8 4ot foingd it~ R 2 o T
%#c~ k-7 % -LNAPL = #p mri%fr(Huntley and Beckett, 2002; Adamski et al., 2005; US EPA,
2005)F % »+i¢ * > ¥ ¥ #3x ¥ k& (Charbeneau and Chiang, 1995; Charbeneau et al., 1999,
2000) ~ # % (Charbeneau, 2003) ~ ¥ 1 ** = & (Charbeneau, 2007; Charbeneau and Beckett, 2007)
PRz R EMFE R FIRFEERF R R oMLY R IR RS SER
e v ooyt o AL # 75 5 6%Fr 14% (US EPA, 2005; Adamskl et al., 2005) - Adamski
etal. (2005)4] * API/Charbeneau -5 idz magded & ¥ 550 wolco % 3u TRl ¢ 50 B A&
BBE46me st S 2 LNAPL ~# ~ & frR ~ ® »]J:“’K'fh,’“? MR RAE G oee él o AR E
Fg R LNAPL 42 4r & /] 3t 3% > %+ 5 2% - st*‘._’%"'g%ﬁiﬁ'l? vz 2009 L e 15 &1
ARG S (5w ey 568 Lo T 3% E Gl P 2 R P T R RIRA (2 m)
2= LE o

et R miEk 2 3 ¢ ch LNAPL ## ",% » 5] LNAPL /% #p & Er}iﬁi& J J “'L'r L g
% 2 (4o MPE, Bioslurping) enf;5 2 V@ & & A3y o R %% > MPE ¥ 11 iE
= AEdp o - LNAPL B & '8 M| R eanp 5 i é_ffiﬁ}; pE i F J p %%%—m;{% o 12
1 2 15 LNAPL ¢ T w38 | (Rebound) # 3k LNAPL * MR A3 T kizg + o Fla o fimif
2 ¢ LNAPL B ot = 3l s R PR 0T g (RITH T RAER) 22 0 ke
FE 0 ik B MPE fiBimiffd H P e i A 35 o 15 LNAPL % i 1 5 i
2 5; ¢k e i R L ATR 0 FlptF MPE ¥ MG T EiE 0 BT 2K LNAPL o R R
MIAEENZRE -

gt 2o aiER > G 287 7 =0 (Lietal., 2003a; Yen et al., 2003; Yen and Chang,
2003) - Li etal. (2003a)#% 21§ *TA % % 4pinA25S Hope 4D gi @:}@ Kfi},—f/p O A B R RS
B0 FIEE B ALE 3 e Bk s LNAPL ~ F ergnde 2 o4 2 4258 B £ - Yenetal. (2003) 7] #%
&1 Bioslurping % 1~ % %E_}\ B S A R cd éb#a‘i g J\ﬁ] ¢ LNAPL v 2
ST RER W f 2 il ToRP i feilefok ¢ oahg dpinds o B REECER Y B F
(é@) ¥ T LNAPL'f‘T'f'%é/p }Fr/pﬁ;i#‘—r ke s Pug r,,%mq.*m‘a‘ﬁ)f%’i* o fe ik
P47 HoR] 2 WO AR N PR ALY AT R - ] B R R = AN D N E AR
B Jefe B B ”KJ&E* R EZ g (bl R A AT L) SRR
KR o b it enfe 5N R E 2 K g § < iCkE(Charbeneau et al., 2000) o

T2 5 VERHRYE S Sz e s FM i) » Y £ 84 £ 7 43 B (Blake and
Gates, 1986; API, 1989; Baker and Bierschenk, 1995, 1996) - i&|4- Charbeneau et al. (1989) &
5 K BCR] R wolT o AR 0 B AR Y S 4pn mg"k B wolT s R ek
ﬁ%ﬁ%mﬁﬁu;ﬁ#ﬁmﬁﬁﬁﬁwﬁm@mmﬁ°

Beckett and Huntley (1998) & * MAGNAS3 i LNAPL ¥ 4z - MAGNAS3 (MAGNASS3.
HydroGeoLogic, Inc., 1992; Panday et al., 1994; Huyakorn etal., 1994) z = &5 T~ % = 4p s
Wi 2N S R KBRS AT T AT AP LNAPL w T ~ iR o
PEET S5 OERMGE S LNAPL &2 B @ s foB X 2 3L it e BE
RREEE 2 ] rg BIE P E BR - ROFRT o gkt B ¢ LNAPL ché{o R i ¥
PORRAR L A

T B U K,% & ¢ endh AL R > Beckett and Huntley (1998) #-4% % 3 :fs - 53544
w»@]%&: 15m> L 575m> ¥ T-kER 10m (B 2-5) w3 B®R + > ¥ 7ok
g o LNAPL 5 &% n 8% (7% LNAPL 2884 7 % ) - LNAPL % jz2 ﬁ‘_};g v




WERB TR R G~ F WA R o

Bt LNAPL 4% ek % 877 (I12:6) > FILNAPL £ §+ L83 &2 7 & fok ' 14
1o 2 gt 8% S p(Intrinsic permeability) oz 3 Sl 0 Tt At Lk ¢
EEFNHET P A TRE R NG g R 3 - Smp RN LNAPL & fe
AP BEE S AT Y o LNAPL w fedid o 2 dnd T et 05% -
B gt 2 T LNAPL 235 42 5] LNAP £ 0 @ 1 S Gt BAERE4LR 5 » 7 T fgh o
B LNAPL 235 1 % 8 5 fo R 9 % P BT TUeR o FIt 0 0 R eI v i
BE IR RS e o FL B E e T e R R T E R ¢ E ] i s AR
Higw BREM EY 3R SOER PR R g B RS A R RE T IRV
PAT (TS AERAR TR RFER) A A A HBE P LNAPL. £ T £ enl g
Poor e FIH Y 4 BEG kox § i o

360 Degree Domain ‘\

" Surface of Radial Domain

 LNAPL Zone
Water/Cil and

fapor (in finge
AquiferWater Only Zane

575M

W 2-5 #$# % # 7 & B (Beckett and Huntley, 1998)

12 a 12 b
" S—— JRTY Y BRI PPN
E *-;’ ............................ E e L
E 10 ~ Groundwater Plezometric Surface _§ i0 ~ - -~ Grounduf:frar,ﬁiszbmatrlc Surface
E o
a | [0 e SW Soil H ( -
U g —— SM Soll - G gV
B —— ML Sail e § T 10 ft Observed Product
g A/l o 2 g — - 5 ft Observed Product
8 - —— 2t Observed Product
) ) . 2
00 01 02 03 04 05 06 07 08 09 1.0 0.0 0.1 0.2 0.3 0.4
Saturation (dimensionless) Saturation (dimensionless)

W 2-6 (a) 4 4oi% B A& 10 ft Bt %2 LNAPL 4~ 4pde4c i ~ (D)3 A~k B A
Hoie % % 2. LNAPL %~ 4247 v & (Beckett and Huntley, 1998)

ST T RORE R B R RN R B ¢ Tk ik R
seat o g 10 ftA=4ni5 0 pF o> LA (SW)F ? 0 oo T et fr R B+ BV iE 90% 5 e A
PR TR (SM) P 5 B de e £ F 30% 5 AR (ML) P B 11% - 49 ek 2. 4 -] 45 LNAPL
R HIF S AL F16 &R &% 55 12 (Intrinsic permeability) e © 51+ i shmafie 3 ¢ LNAPL
B Aok B A ] o

P Bt TR L 8 T R G PR 305 0 ffe AT d B ok (BT ¢ R
'&;"g‘m‘f’;) v A é“,%',%_ 96% ; ¥ & B(5m i p)d u/%-g‘ { % & 98% » LNAPL f‘&"ff'ﬁi J 90%"%
13 20% - 6 & LNAPL 4 % Zod B 4ne 10 gal/min 2+ A3 # 155 % 1 gal/min o SM
A FLImp htr ok Bl B 3.2 & g wojcis d 30%% 1 10% HEHR RN i
4078 % 7§ 5% 5 LNAPL 4% & d 0.045 gal/min 2 3.2 & 5 % i< 3 0.015 gal/min (& 2-7) -
Wi 3.2 & ¢ ML 2 3 shif g 51 7% -

Wk 4e ~ f R #FEs 2 554 w4 (Vacuum-Enhanced Fluid Recovery, VEFR ) » 12 § /B 3% 3
o e B R B R R AR E R S e T ok g L 2RI
LNAPL - 4 » VEFR {4 » i w fcoc S B3 2 5 ffe 3o 2 5 0 sk ¥ fUadfde d A% »
A T e ek BT 2 (] 2-8) -
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L] R
o
i
3
§ : ——— Dual-Phase; SW Soll
B o} VEFR; SW Soll
> i = Dual-Phase: SM Soll
P - —. VEFR; SMSol
8 i == Dual-Phase; ML Soll
g M E——
| et S
il Gt T - Lo
z H = LT Sttt
BT T
i
1
2
109
1

2 3 488 @ 2 8 450 102 2 3 45¢€ |Io:l
Time (days)

W 2-7 % FfEagd B Y LNAPL 3 ' & g g 2 B 7 (Beckett and Huntley, 1998)

0.09

~ = Drawdown = 2.5 ft
o8| ' ===« Drawdown =5 ft
e = — Drawdown = 7.5 ft
0.07 N e Drawdown =15 11
E T, ~, = VEFR, 7.5 Fi. Drawdown
5 oo0s el N,
= TreL
g 005
H
g 004f
.|
L oo3
i 002
o001
0.00

100 2 a3 #se 100 =2 3 £s5e 102 2 3 444 102
Time (days)

B 2-8 SM 2 3% 7 VEFR #2852 %% v o &2 p¢ P 2. B & (Beckett and Huntley, 1998)

Peargin et al. (1999)4] * MAGNAS3 (Huyakorn et al. 1994; Panday et al., 1994) ##t i5-d =
o o 't MAGNASS fiC5t MPE » & #8390k % ~ £y 22 ia % 1R 2 3 & (B2 025 M)~ ik
TrRjgihil HARY 3 K o 2 LNAPL 5300 > 3 Tokia F BAR Im; BXERIZS -
AR o TR AR 5 TREE o WA Z A TR 5 &% 0 R (No flow) -
B ErEL R Y L > FRASINHG  d ok s~ F o F r2istE 225 m (KN Gk B
Tokime ) B FANEFERT FFEELE Toka 3me 27 7 o 0 = MPE
FEip it 10 (1) LNAPL 47 {r B "SRR e PRI 2o 1 g% 1 5 (2) fw e 10m #RIpN -
PR LNAPL #/ % 1t 5 (3) &l 3 ¥ hi3 4 % ¢ LNAPL Z A chnds o
TR 0 AR T2 2AR TR eaed 3 4 % LNAPL & i foRli ff - sk in
T gwmME S MPE BTG RAp T o §oonadf B SR R - R R RS
Llhm b APl @R S o AR TR o Wi A T 8 B F 0 i chlm o
b5 LNAPL 47 fr i "% M7 3] 0.1% - e g pFRA £ & 3 30 = » MPE # 10m 2 0 LNAPL 47 fr
BT % M 5% o 415 -k % Bt 0.05 darcy (4.0 x 1070 cm?) enim i 2 3 k2 AL T
B2 4 fef 30 35% (B3 ¥ i) BRIEEG g o Bl 0 - L& {oR K LNAPL
AREE SRR PE S g R 0 MPE 2R L g g K0S -
5 L oke s B i bmape 4 3 Y o e MPE é«%’“#dv " LNAPL Z it eic 7 (4
21)° EELE NS S S R L R R A S S L A
i?ff:%ﬁi&x)»]m’ﬂ l’:—‘g%%ﬂmﬁ-}#& i¥$%§’/minh4"“ﬁ ﬁg;'é“a gxar‘l\/”:)E"lef
/1 ﬁikf ST R ©

21 BBy EETAR2 ii" 2 ¥ woleae (10 m £ 42 p)(Peargin et al., 1999)

Simulation Imnal Volume (m°) | 8-hr Recovery (m’) | 30-day Recovery {m )
Sand (2 Darcy) 73.5 3.5 (4.8%) 21.4 (29.1%)
Silty Sand (0.4 Darcy) 34.6 1.0 (2.9%) 4.2 (12.1%)
Silt/Clay (0.01 Darcy) 2.8 0.0 (0%) 0.0 (0%)
Interbedded Silty Sand & Silt/Clay 14.5 0.2 (1.4%) 0.3 (2.1%)
Interbedded Sand & Silt/Clay 37.0 1.7 (4.6%) 8.5 (23%)
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Chen et al. (2005)%+ LNAPL z_ § & 4v :# w 4z (Vacuum-enhanced recovery, VER):E& {7 #& &
Wt F'“f 1 113 7“5"/' LNAPL ~ 3 % ~ ket o ¥ 8L » REgT{fr> #-3D 4L
2D R RO }\’% PR e X £ AT INES R L HEEH e LAY D
LNAm_ﬁdvgBTEx ¥ AEE LNAPL chi & Ak o+ 24 ¥ RBFR % -

Rasmusson and Rasmusson (2009) 2 TMVOC #-#: 9 % LNAPL ,5 J,Lir;‘?—h_ U Wl R
2483 7 1 LNAPL 2.3 B AR {o i in 11 2 90 % chps o i i%rm L phitAE2 3-D [
Tkt o HERZ ZAPFE 5 30 & > 4205, ,ﬁ“’ﬁ% 4700 m® - r*']%s-%g%“’fé_fﬁ g Tk
PRE g BM S R RRAESE R AERE PR ERfer iR AT V- £
£ 2% 5 LNAPL 4 & 1 (Mobility) S ¥ Boif 5 11 » B K50 v [ % % o LNAPL 3
w ¥ % i 5 (Flow Rate) & # 2 B L o« <~ & (h LNAPL ¢ i dRiTaapde ok ok i 3

et e Ap R (PR Shd VR e ush v (TH R P BRI R T Glac
kAR ~NAPL A 4pde o & > AR AR TFA T E -

257 % ¥ g ZHT

»wamwmg PRI #RARRLS S RRE - Fa :
i%“t}\-ﬂ g«‘b’-":‘}' E3% T B 2 ’F‘gr‘!’!,‘i—tg‘aﬁ"“i}'f'ﬁf’@ui LA E R A REBIIRD
%‘rﬂ dé&ol,{l—#}ﬁ"‘”ﬁl,{'ﬁﬁ'{§ \—*z\,

S Tljmav :—”J-ﬁdA+ msw @1

HPCVIpZEY - TRHAEHE - CS 5o FIZHBDIHFY & - m 55 %4 i
@giﬂm%ﬁ‘%/}#’\]?/ﬁ#‘*ﬂ%&ﬁ—\/i’n iggﬂlr_nl—m/z-@ 787‘;::&#%}:}‘@]7‘3{
L4 Pk Oig 2 ensink source o 23N F FRRGE T F HTR TILHILT R

”J -AdA = jﬂduv(J)dv (2.2)
et *”L—f ARG

m{—mm.v(J) S}V =0 (2.3)
N

B .

=M div(J) =S (2.4)

P LI AFY B A @?ﬁiﬁr’ﬂ@ = A 07%)@’**%@&5 T oM AN R
B-do-p0 5&"’ vLRg R s BT i A ﬁ— K K- AR A N o (B mﬁ 2002 )

’F’rﬂé}'ﬁ‘ m ¢ vk R A s 7\7\ B Al ’fﬁfm»#i FPE oA hr A
BT A Jp 0 A A A BT R o - R A S = 4R ok
ZF R FEmEsE A E"F{ Boo e b gE - fpek R G A#H > BE S
MakisH© = 4p9 kB o B AL 503 A fe (Solute Partitioning ) o 12 -k 4p ik & 5 A @
TN GREFZETA ﬁ“ﬁ\ ¥R higE o 3 SRR T A ik .

i LRy SRR IR - Rl I;L T @ﬁ; (Advection Transport ) ~ #%+¢ ( Diffusion) ~
¥+ 2£ 57 (Mechanical Dispersion) » %‘r“{%z“r‘ﬁ R g R m R AP LA T
%J o L @ﬁi;]n\&%ﬁ-?m%‘rﬂﬁ ﬁv" \ cEed KRG R R AT TR A8
W3 F @ﬁiﬁr’ﬂﬁﬁi HIERTEPBEARF LMERT « df it B it gy
r’v’ﬂ@ﬁgj #E;’;x TEAEE SO U e R m@ﬁ;] 7% g 4p NAPL mf/)ﬁ‘i:i._ﬁ;é_@ﬁ;] T o s
EE O] - MREBACE R T ARSI 75 o ¥ b BT T I S
PoAL T F et FOg 3 RGIIEY o TR B 5 IR B TR L o R ] Y
kA5 F e LimiE ik £ 42& (Deviation) > HBZELF > i TR oo
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FAL o Y RS RAESTE BT RS B > 1ok # 4 2 4 (Hydrodynamic Dispersion) X

% 5t » (Randall, 2000 )

2.6 TMVOC 2 # % 12 7]

TMVOC % £ R % 6874 5o % B 73 % % (Lawrence Berkeley National Laboratory ) #7F#
> 2 TOUGH2 : ;‘f AT BNz BfFA NG VLA Z AR RRARS 0 AR R TR &
WA f g R H ke fok At ot ¢ m@ﬁﬂ » ¥ ¥ fHE A 1 UL - Thunderhead Engineering
= R R* 46 PetraSime = 5 3% 73 # % TMVOC g 7 fice (Battistelli, 2008, i
%, 2009, Rasmusson and Rasmusson,2009, Erning, et al, 2009, Kererat and Soralump, 2010, et
al.) -

TMVOC ¢ * # » 3% 5 *TL » (Integral Finite Difference) g2 3 B3 > ApFRF 38 ¢ P
-l REL B smk/source & * fully implicit i@ o # #1404 ¢ hat g * T
BPERR o Al L P R 04 s 4 (Surface Integral ) M gdr s BT & i g
AL ETHEDRrP R o W B R BEAIEA Vo 2 BEZRF Ve 2HHF WP &
KFFEE=EiEs o B

[Mdv =v M} (2.5)
v,
MEVe? g BAT > MEZ M &V P chT35E - a A3EcZ BT o frdla ff + o

N + = ¥
WEvT 4T 5

A
J- F*-ndl = Z Ahm an (2.6)
I'n m
Fn%*;}?:ﬁ'l‘iﬁé’ ﬁé‘#q:%q‘j‘f%—} ;é':)fﬁ’g’ IE 1~K‘T’/' Anm?Vnﬂ]:‘f'vm“r’iﬁL Fnm
T

TMVOCéﬁ % 17 2B o

® 2-9 TMVOC &35t 8-3] (Pruess et al., 2002)

m K#d 72 kipiitdgsd o w5

K
m = ZX,B F,B,nm (2-7)
X; = K B#B/n %ﬁm,};}i Fﬂnm IS B—L/n i# 7 e Anm T A ',%_‘li:"f_g’;" M Fﬂnmﬁ%};‘l‘}%%&
K, 0 P,,—P
F nm :_knm i |: £ - P nmgnm:| (28)
g |: Hp :Inm Dnm g

Kom & Vpeid W«z % #c (intrinsic permeability ) > K,z 5 B erip$ti% % licopp 5 R A >
Mp = BbiF 4 2 Ppy 2 Py A W B & B &V 2 Vi B4 > Do 3 Vo 2 Vi i BEEESE » Qo &
é_*‘ﬁsifi_%‘ﬂ;!—z‘_hn mig st s g o

FWEM o E iR
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am 1 )
L= F_+ 2.9
dt Vnzm:Alm nm qn ( )
H g% sink/source %V, ? eI aE > gt T 5 TMVOC ] > #2358 o
TMVOC 'Fhrﬁ Rt ,&F&FRE‘F Py ﬁ’r,gfwml - kilj L gj_ @5_'&;,&1 i?—’" g {L 5‘3 §i:|: @'5-;

PR o PBF BE AL BT SEEA 2 e b PR 2 MR s 2 VOC
2.4 53 o & TMVOC #2413 4258 ¢ A % g 8+ 28 47 (Fickian Model for Hydrodynamic
Dispersion) » JE3p e & 2 s £ 2 AR R4 H @ ﬁg,] 8 55 o (Pruess et al., 2002)

B

B1EEFREIRAD Rk
ﬁgr.é%TMVOCﬁﬁWQfﬁ@m£¢¢;¢zﬂ'mﬁg;ﬁﬁﬁﬁ%kawKZkﬁ
D ERAF LR o AERATH BERA T ARG AR S B AIER L RS A F
iéﬂ’m&%pmﬂﬁzéﬂ PR KR Sk B ST HALT R DAL
oot REA RS- BRELDZLHREFL AR P EE T P RR L HE Y kR
ﬁﬁ*%é%wﬁmqaﬁ4°,M«$§$ﬁT%%*4% A4 kPl - BRIERS
kPR s B SORTREH L bz &S~ B Y W W BB & b ToRG T o @
AP SR LR R PG EE L L N Fie g RIS R
FEFIeRE PR E o R W DR ] R R e E R
%“&m”ﬂﬁ%ﬁ%%liﬁ$ﬂﬁéi PEE o F - PEER SRR A A TR

B> 'Pb-ﬁhﬂ*ﬂ—%&d’rr'/@/% '3’._]”“-?/».1 E?}fm T*ﬂ—%&&%/\% fg‘./r‘-° 'JT/V\‘%'J{QLLL::PEF
Bom B AR o AR T AW R REE A S LV BT R S AP R EE

J . . N B REN
[ "x’}'l%%ﬁa‘i{{*&;é r%/?‘/%—"?ﬁﬁ./é- °
Atmospheric Boundary

H |
B

GWT fe——
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Weight Percent Viscosity (cP) Density (kg/ m®) | Molar Mass (g) | Mole Fraction
(%)

Benzene 3.5 0.652 885.0 78.114 0.0393
Toluene 7.0 0.590 867.0 92.141 0.0667
Ethylbezene 55 0.669 867.0 106.168 0.0455
Xylene 1.5 0.620 864.0 106.168 0.0124
Cyclopentane 24.5 0.430 896.0 65.515 0.3282
Heptane 20.0 0.410 679.5 100.200 0.1752
Isooctane 20.0 0.510 688.0 114.231 0.1536
MTBE 18.0 0.470 740.6 88.150 0.1792

Density=778.6 kg/ m*  Total Moles=1139.6 mole Viscosity=0.4733 cP
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Weight Percent (%) Viscosity (cP) Density (kg/ m”3) | Molar Mass (g) | Mole Fraction
Benzene 3.5 0.652 885.0 78.114 0.0393
Toluene 7.0 0.590 867.0 92.141 0.0667
Ethylbezene 5.5 0.669 867.0 106.168 0.0455
Xylene 1.5 0.620 864.0 106.168 0.0124
Octane (Edited) 82.5 0.447 759.2 86.580 0.8362

Density=778.7 kg/ m* Total Moles=1139.6 mole Viscosity=0.4726 cP
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Final Total VOC Mass Extracted vs Distance Final Total VOC Mass in Site vs Distance
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BNN Case 9 Benzene aq BNN Case 9 Benzene gas
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ABSTRACT

Two of most important functions of a landfill cover are to minimize the infiltration of
water and to control the emission of landfill gas. Compacted clay liner (CCL), geosynthetic
clay liner (GCL), and geomembrane (GM) are the three major types of hydraulic barrier
materials used in the bottom lining systems as well as cover systems of landfills. However, it
is well recognized that clay liners crack upon desiccation. The cracked liner may enhance the
capacity to conduct fluid, which not only increase the infiltration of the downward moving
water but also the emission of upward moving gas. Laboratory air permeability tests were
conducted to quantify the rate of air passing through desiccated clay liner specimens. In
addition, the equilibrium water content of clay liners in the field condition is also studied. The
results show that desiccated clay liners may allow considerable amount of landfill gas to pass
through. In addition, the air permeability of desiccated GCLs are much higher than that of
desiccated CCLs. Accordingly, it is suggested that geomembranes should be used to contain
landfill gas for landfills located in areas where landfill gas emission are to be controlled

effectively.

Keywords: landfill, clay liner, air permeability, landfill gas emission

INTRODUCTION

In recent years, landfill gas emission
has raised considerable concerns since
methane is a major greenhouse gas. As a
result, for closed landfills, the effectiveness
of the cover system to control the emission
rate of methane and non-methane organic
compounds (NMOCs) needs to be assured.
Gas passes through the landfill cover
system by means of advection and
molecular diffusion. In MSW landfills
where large amount of gas is produced, the
internal pressure is usually greater than
atmospheric pressure such that landfill gas
will be released not only by diffusion but
also by pressure-driven advection. In the
meantime, the natural fluctuation of
atmospheric pressure can also cause gas to
flow into or out of the landfill. Furthermore,
a change in leachate/water table or
difference of temperature across the cover
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system may also lead to gas migration. In
many cases, the temperature within the
landfill reaches higher than 40°C due to the
heat generated by the anaerobic degradation
process (Tchobanoglous et al. 1993).

Gas movement by diffusion is driven
by gradient of concentration. When a gas is
more concentrated in one region of a
mixture more than another, it will diffuse
into the less concentrated region. Thus the
molecules move in response to a partial
pressure gradient or concentration gradient
of the gas. The present paper will focus
only on advective transport.

Figueroa and Stegmann (1991)
performed several field tests on a 0.6
m-thick soil cover (SC-SM) at a German
landfill. They found that the landfill gas
flow rates ranged from 5.2 x 10 t0 9.6 x
10 m*/m?/s. They suggested that the
dominant gas transport mechanism was



advection.

In most of the modern landfills,
compacted clay liner (CCL), geosynthetic
clay liner (GCL), and geomembrane (GM)
are the three major types of hydraulic
barrier materials used in the bottom lining
systems and cover systems.

Many landfills have used compacted
clays as hydraulic barrier in the cover
system since the hydraulic conductivity of
well-constructed CCL can be as low as 1 x
10™° m/s and can meet the regulatory
requirements. However, the major
disadvantage of compacted clay liner is that
they will crack as a result of desiccation,
freeze-thaw cycles, and differential
settlement (Koerner and Daniel 1992,
Daniel and Koerner 1993). For clay
minerals with high swelling potential, the
cracks may heal upon rehydration. Kraus et
al. (1997), McBrayer et al. (1997), and Day
(1998) have looked into the phenomenon of
crack-healing of compacted clay.
Furthermore, Day (1998) suggested that an
important factor in the healing of cracks
upon wetting is the type of clay mineral. He
stated that for montmorillonite the
desiccation cracks are completely healed
upon wetting. The hydraulic conductivity of
cracked Otay Mesa natural clay specimen
decreased from 7 x 107" m/s to 3 x 10™ m/s
as a result of healing of cracks.

Geosynthetic clay liners have not only
been used in bottom liners for landfills and
surface impoundments (Schubert 1987;
Daniel and Koerner 1991; Trauger 1991,
1992; Clem 1992), but also in final covers
for landfills and remediation projects as
well (Koerner and Daniel 1992, Daniel and
Richardson 1995; Woodward and Well
1995). The main advantages and
disadvantages of GCLs have been discussed
by Boardman (1993) and Manassero et al.
(2000) amongst many others.

Although GCLs are usually installed to
limit advection of liquids (e.g., water
through a cover system) they may also
serve an important role in covers as a gas
barrier. Theoretically, hydrated GCLs as
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well as wet compacted soils should hardly
allow any gas to pass through (Daniel,
1991). Nevertheless, Trauger and Lucas
(1995) did measure the rate of methane gas
migrating through GCLs via diffusion.
Their results show that the rate of gas
transport through GCL was very low as
long as its water content was greater than
90%. The permeance is about 2 x 10° m/s
for GCL sample with a water content of
around 50% and drops below 1 x 10 m/s
when water content reached above 90%.
This suggests that the gas permeability of
GCLs is dependent on the water content.

GCLs are known to have a
phenomenal ability to retain moisture such
that they might have the potential to be
effective barrier to gas migration. Research
on GCLs buried in sands showed that they
were able to absorb water from the
environment very quickly why buried dry
or hardly lose any water when buried
saturated (Geoservice, 1989; Daniel et al.,
1993).

With GCLs being increasingly used as
part of the capping, their gas performance
has come under a growing scrutiny. Recent
work has shown that the gas permeability of
GCLs is affected by the manufacturing
process and the form of bentonite (Didier et
al., 2000; Bouazza and Vangpaisal, 2000;
Shan and Yao, 2000; Aubertin et al. 2000;
Vangpaisal and Bouazza, 2001, 2003).

This paper presents a test method
developed speci.cally to assess the gas
permeability of GCLs. It is based on the
method developed by Matyas (1967) for the
measurement of air permeability in soils.
The testing apparatus has been designed to
accommodate the GCL sample and gas.
Flowmeters are used to monitor gas outflow
from the device. The test method offers the
possibility of carrying out gas permeability
tests at different pressure gradients and
confining stresses.

EXPERIMENTAL PROGRAM



The air permeability of soil depends
on factors such as the size and number of
cracks, the air porosity (ny), and the degree
of saturation. Many of these factors are
dependent on each other or on some other
factors. For example, the degree of
saturation depends on both the water
content and the void ratio. Among these
factors, the air permeability of soils is most
sensitive to the variation of degree of
saturation. On the other hand, the void ratio
of a clay liner in the cover system will be
almost constant, since effective stress is
kept unchanged throughout the service
period. Therefore, the degree of saturation
solely depends on water content.
Furthermore, the cracking of clay liners is
also closely related to the water content.
Therefore, in a cover system, the water
content is the single most important factor
that affects its air permeability of a clay
liner. As a result, this research focused on
determining the effect of water contents on
the air permeability of the clay liners.

Materials

The three clays selected to represent the
compacted liners were kaolinite, Hsin-chu clay, and
Chung-li clay. The properties of the clays are listed
in Table 1.

Table 1  Properties of soils samples.
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Table 2 Results of compaction tests.

Soil 74, max Optimum
(g/cm®) water
content (%)
Hsin-chu clay 1.72 18
Chung-li clay 1.48 27
Kaolinite 1.27 36

Note: Specimens were compacted with 48% of
Standard Proctor compaction energy.

1.8
‘g /,\\ # Hsin-chu Clay
> . = Chung-li Clay
g 1.6 / A Kaolinite [
—
x
> 14 /V'\.
ey
2 12 p—
>
o
1
0 10 20 30 40 50
Water Content (%)
Fig.1  Compaction curves of clays
tested.

Table 3 Shrinkage Limit of Soils.

Soil Shrinkage Volume
limit (%) change (%)
Hsin-chu Clay 16.7 15.61
Chung-li Clay 19.6 39.88
Kaolinite 40.5 30.64

Table 4 Results of fixed-wall hydraulic

Soil  Finerthan LL* PL* PI* G, USCS _conductivity tests.
#200 Soil k (m/s)
sieve (%) Hsin-chu Clay 4.6 x10°

Hsin-chu 4888 254 21.1 43 258 SM-SC Chung-li Clay 12 x10°

clay Kaolinite 2.8 x 107
Chung-li 9251 585 22 365 265 CH - .

clay Note: Hydraulic gradient = 100.
Kaolinitt 100  56.5 41.1 154 271 MH

Note:*Portion Finer than #40 Sieve s

The CCL samples were compacted with 48% of
the energy produced by standard Proctor compaction
test. The results of the compaction tests are listed in
Table 2 and the compaction curves are shown in Fig.
1. The shrinkage limits of the bentonite in the clays
were determined according to standard test method
ASTM D427-92 and are listed in Table 3. The
results of hydraulic conductivity of the CCL
specimens are listed in Table 4.
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The two GCLs tested in this study were a
needle-punched GCL and a stitch-bond GCL, which
will be designated as GCL-A and GCL-B,
respectively. GCL-A is comprised of a nonwoven
needlepunched geotextile that is needle punched
again through a layer of bentonite into a woven
slit-film geotextile. The bentonite content is 3.6
kg/m?. The water content of the bentonite in dry
GCL-A is about 10 - 12%. In GCL-B, 3.6 kg/m? of
bentonite is sandwiched between woven geotextile
on the top and open weave geotextile at the bottom.

The shrinkage limits of the bentonite in the
GCLs are listed in Table 5. It is interesting to note



that the shrinkage limits of the bentonite are very
low comparing to the high water content of saturated
bentonite.

Table 5 Results of shrinkage limit tests on
bentonite in the GCLs.

GCL Shrinkage \Volume
limit (%) change (%)

GCL-A 35.2 87.86

GCL-B 29.9 88.15

Water Retention Test

Clay liner specimens were placed under 0.5 m
of moist sand and loosely compacted moist clay in
two 86-liter plastic buckets separately. The
specimens had been allowed to absorb water under
dead weights that imposed a vertical stress that is
equivalent to 0.5 m of soil before they were put in
the buckets. The test was performed over a 90-day
period spanning from March to May. The monthly
average temperatures were 17.2°C, 21.1°C, and
24.6°C, respectively. The average humidity during
the test period was about 85%. The suction in the
cover soils was monitored with tensiometers.

The soil water characteristics of the clay liner

samples were determined with a 15-bar pressure cell.

The main drainage curves (MDC) of the compacted
clay specimens are shown in Fig. 2. The specimens
were soaked to enhance saturation before the test.
On the other hand, the specimens of water retention
tests were placed in the surrounding soils
immediately after they had been cut from the
compacted samples. As a result, the water contents
of the retention test specimens were a little less than
those indicated by the MDC.

1000 -
900 L —e—Hsin-chu clay

800 | —a—Chung-li clay
700 —— Kaolinite

600 r
500 r
400 r
300 r
200
100

0

Suction (kPa)

0 20
Volumetric Water Content (%)

Fig. 2 Soil water characteristic curves of

compacted clay samples.
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Air Permeability Test

The diameter and the height of the CCL
specimens were 101.6 mm and 195 mm,
respectively. The clays were compacted at a water
content 2% wet of optimum with 48% of standard
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Proctor compaction energy. In order for the cracks to
develop more easily, it was decided to use shorter
CCL specimens. Therefore, the specimens were
compacted in a compaction mold of reduced size.
The compacted samples were trimmed and then
retrieved from the compaction mold.

The GCL specimens were cut from the rolls
supplied by the manufacturer to a diameter of 114.5
mm. The specimen was placed in an acrylic mold
with an inner diameter of 114.5 mm. The specimen
was then hydrated with tap water for 1 day.

Both CCL and GCL specimens were placed
inside an oven and heated under a temperature of
around 35°C for a given period of time. During the
desiccation period, a dead load weighing 4 kg was
put on top of each specimen to provide a normal
stress equivalent to that created by 300 mm of
topsoil. In addition, the CCL specimens were put on
top of a sheet of sand paper to prevent them from
shrinking as a whole so that cracks could develop.
This process was repeated for different drying times
to obtain specimens with various water contents.

The air permeability tests of CCL specimens
were performed with flexible-wall permeameters
(Fig. 3). During the tests, a low cell pressure of 3.5
kPa (0.5 psi) was applied to ensure good contact
between the membrane and the specimen.

T

Fig.3  Schematic diagram of the
compacted clay air permeability testing
system.

Influent Air Confining
*ﬁ Pressure
(= (74 N

7
Effluent Air to
Flowmeter

-

Fig. 4 shows the schematic diagram air
permeameter for testing the GCL specimens. GCL
specimens were clamped between two ring-shape
holders. Bentonite paste was placed along the edges
of the specimens to prevent air leakage.



[ !E ]
| & s

Fig.4  Schematic diagram of the
permeameter for measuring air permeability
of GCL (Shan and Yao 2000).

For testing of both types of materials, the flow
rate of air was adjusted by regulating influent air
pressure with the pressure control panel (Fig. 5).
Very low influent air pressure was used for the tests
(less than 2 kPa). The range of flow rate was as high
as 27 I/min for the more permeable specimens under
larger gradients and as low as 0.5 I/min for less
permeable specimens under smaller gradients. The
head loss across the specimen was measured by
U-tube manometer. For each specimen, head
differences corresponding to 5 different flow rates
were measured. The linear relationship between flow
rate and gradient justified that the gas flow was in
the laminar range. The test results of one of the

compacted Chung-li clay specimen are shown in Fig.

6 as an example. After each test, the water content
and the dimensions of specimen were measured.

Flowmeter

o

Air Pressure
Control Panel

Fig.5  Schematic diagram of the gcl air
permeability testing system (Shan and Yao
2000).
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Fig. 6  Relationship between flow rate
and gradient of air permeability tests.

The air permeability of the specimens was
computed with the following equation:

K = q/A 1)

(Ahtotal - Ahequipment j
t

where [ Jhora IS the total head loss measured
(MM); [Thequipment i the head loss of system without
specimen in it (mm); k is the air permeability (mm/s).
The compressibility of air has been taken into
account when computing the flow rates that passed
through the specimens from the values measured
with the flowmeter.

RESULTS AND DISCUSSION
Water Retention Tests

Results of the water retention tests show that
the hydrated GCLs did not have a strong ability to
retain water. The variations of the water content of
GCL specimens with time are shown in Fig. 7. The
final water content of GCL-A and GCL-B buried in
sand are 48% and 53%, respectively. The final water
content of GCL-A and GCL-B buried in clay are
27% and 28% which are lower than the shrinkage
limit of bentonite. The water contents of the
specimens at the end of the tests were much lower
than those reported by Geoservice (1989). On the
other hand, the final water contents of the specimens
are comparable to the results of absorption tests
performed by Daniel et al. (1993).



200
180
160

—=—GCL-A

—+—GCL-B
—a— Kaolinite
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120 —>— GCL-B
100 —=a— Kaolinite
—O— Chung-li Clay
80 e . —>— Hsin-chu Clay

Gravimetric Water Content (%)

0 20 40 60 80 100
Time (day)
Fig. 7 Variation of water content of CCL
and GCL specimens with time.

The CCL specimens also lost considerable
amount of water during the test period. The
difference between final water contents of
specimens buried in sand and clay is most
significant for kaolinite. On the other hand, only a
small difference in water content was measured for
Chung-li clay. In addition, the final water contents
of kaolinite and Hsin-chu clay were all lower than
their shrinkage limits. By comparing the results with
the index properties, it can be concluded that clays
with higher plastic limit are capable of retaining
more water.

Air Permeability Tests on CCLs

The relationship between air permeability and
water content of CCLs are depicted in Fig. 8(a), Fig.
9 (a), and Fig. 10 (a). The air permeability of the
compacted clay specimens shows a slight increase as
the water content decreases. The trend is most
obvious for kaolinite.
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Fig. 8  Relationship between air
permeability, water content, and shrinkage
of compacted hsin-chu clay.

Among three CCLs, kaolinite has the lowest air
permeability while Hsin-chu clay has the highest. It
is interesting to note that the hydraulic conductivity
of Hsin-chu clay is also the highest among the three
clays (Table 4).

The increase of air permeability with
decreasing water content did not seem to be solely
related with the increased number of cracks. The
cracks developed before the water content of the
specimens fell below the shrinkage limit. The loss of
water of clay particles along the cracks might
actually widen the pathway for air.
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Fig. 10 relationship between air
permeability, water content, and shrinkage
of compacted kaolinite.

The relationship between the air permeability
and shrinkage of the clay specimens are shown in
Figs. 8 (b), Fig. 9 (b), and Fig. 10 (b). Only the air
permeability of compacted kaolinite decreased at the
same time when it shrank (Fig. 10(b)). For Hsin-chu
clay and Chung-li clay, there did not seem to be any
relationship between air permeability and shrinkage
(Figs. 8 (b) and 9 (b)). Again, the reason is that the
air permeability of the CCLs is related to the
widening of the cracks rather than the reduction of
the total volume.

It is interesting to note that the optimum water
content of Hsin-chu clay and Chung-li clay are
higher than the shrinkage limits whereas the
optimum water content of kaolinite is lower than the
shrinkage limit. As a result, the volume change of
kaolinite specimens was only about 1/3 of the
volume change determined from shrinkage limit test,

20

while this ratio was about 1/2 for the other two clays.

In addition, kaolinite has more fine particles and
lowest plastic index value. These factors may
contribute to the low air permeability of desiccated
kaolinite.

On the other hand, the content of fines of
Hsin-chu clay is slightly below 50% such that the
sand particles may be in contact with each other.



Therefore, as the water content decreases, the clay in
between the sand particles shrank and pathways of
air formed. As a result, Hsin-chu clay had higher air
permeability than the other two types of CCLs.

Theoretically, the volume of the clays does not
change after the water content dropped below the
shrinkage limit. However, as shown in Figs. 8 (c)
and 9 (c), for Hsin-chu clay and Chung-li clay, the
specimens still experienced noticeable volume
change when dried to a water content below the
shrinkage limit. In addition, visual observation
showed that as the water content decreased, the
number of cracks remained approximately the same.
The water left in the desiccated specimens either
occupied the smallest pores or adhered to the surface
of the clay particles. Further decrease of water
content made the pathways become wider and
allowed faster flow of air. As a result, the air
permeability of Hsin-chu clay and kaolinite
increased slightly as the water content decreased
below the shrinkage limit (Figs. 8 (a) and 10 (a)).

On the contrary, for Chung-li clay, which has
more than 90% of clay-size particles and the highest
plastic index value, the air permeability remained
almost unchanged when dried beyond the shrinkage
limit (Fig. 9 (a)). It is noted that the desiccated
Chung-li clay specimens shrank considerably with
decreasing water content although the water content
is lower than the shrinkage limit (Fig. 9 (c)).
However, it is possible that compacted Chung-li clay
liner may have much larger cracks than the other
two clays in the field such that air will flow through
it more easily.

The air permeability of the CCL specimens
with water content drier than their shrinkage limits
are listed in Table 6. Desiccated Kaolinite has the
lowest air permeability, followed by Chung-li clay
and then Hsin-chu clay. Daniel and Benson (1990)
have concluded that compacted sandy clay (SC) is
best suitable for hydraulic barrier because it has low
permeability, high shear strength, and low shrinkage
potential. However, the Hsin-chu clay (SM-SC),
which consists of about 50% of sand has the highest
air permeability. The most possible reason is that air
not only passed through the cracks but also through
the primary pores more easily than the other two
clays. Although the structure formed by sand
particles in contact with each other made the soil
have low shrinkage potential, it also had larger
pathways for air to go through when the clay shrank.
The pathways were developed as the clay particles
between the sand particles shrank such that
additional pore space became available for
transmitting air. Shrinkage of this scale is difficult to
be measured or even be observed by visual
inspection.

Table 6 Average air permeability of
compacted soils drier than shrinkage limit.
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Soil Ka (m/s)
Hsin-chu Clay 2.8x107
Chung-li Clay 8.2x10™

Kaolinite 2.7x10™

The ability of CCLs to transmit air can also be
expressed as the permittivity to air in order to allow
for comparison between barrier materials with
different thickness. The permittivity is computed
with the following equation:

k_¢__4d (2)
t Ah x A

The relationships between the air permittivity
of CCLs and water content are shown in Fig. 11.
Although the data are scattered considerably, it is
obvious that the air permittivity values of desiccated
CCLs are sensitive to the change of water content.
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Fig. 11  Air permittivity of compacted
clay liners.

Air Permeability Tests on GCLs

Since the results of air permeability tests of
GCLs has been described in detail by Shan and Yao
(2000), only a summary of the results is presented
here. The relationships between air permeability and
water content for GCL-A and GCL-B are shown in
Fig. 12. For GCL-B specimens with water content
higher than 190%, no flow of air was observed. On
the other hand, it was unable to detect any flow of
air for GCL-A specimens with water content higher
than 170%. It can be clearly seen that air
permeability increases as the water content
decreases. The relationship between air permeability
and water content of GCL-B is much clearer than
that of GCL-A.
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Fig. 12 Relationship between air
permeability and water content of GCLs
(Shan and Yao, 2000).

Cracks could be observed for GCL-B
specimens with water content lower than about
140%. The bentonite in these specimens formed
chunks of about 1 cm2 such that the GCL developed
a network of wide-open cracks (Fig. 13). For
specimens with very low water content, the cracks
were as wide as 3 mm. A similar pattern of
desiccation cracks of GCL-B specimens have been
reported by Shan and Daniel (1991), Boardman
(1993) and LaGatta et al. (1997). For GCL-B
specimens with water content higher than about
140%, only barely visible hairline cracks in the
bentonite was observed.

25 mm

Fig. 13  Crack pattern of GCL-B
specimens.

On the other hand, there was no network of
large cracks found in the desiccated GCL-A
specimens. Instead of forming large chunks, the
bentonite in the GCL-A specimens shrank to form
small granules as when it was manufactured. The
needlepunched fibers seemed to prevent the
bentonite from forming chunks during the drying
process. As a result, the air permeability of
desiccated GCL-A specimens was much lower than
that of GCL-B specimens.

The relationships between the air permittivity
of GCLs and water content are shown in Fig. 14.
The air permittivity values of desiccated GCL-B are
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much higher than those of desiccated GCL-A for
water content ranging from 50 - 150%. Beyond
150%, the air permittivity of both GCLs is very low.

1.0E+02

1.0E+01

1.0E+00 |

Permittivity (1/s)
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1.0E-02 : :
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Water Content (%)

Fig. 14  Air permittivity of GCLs.

The air permittivity of 3 CCLs and 2 GCLs are
compared in Fig. 15. The air permittivity of
desiccated CCLs is much lower than that of
desiccated GCLs. This means that desiccated GCLs
will allow air to pass through more easily.
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Fig. 15 Air permittivity of clay liners.

PRACTICAL IMPLICATIONS

The emission rate of the landfill gas can be
estimated for a landfill under specific conditions.
The rate of convective flow of landfill gas through
clay liners can be computed with Darcy’s law. In
order to compare the flux through CCLs and GCLs,
the following field condition is assumed. The head
difference across the barrier layer is assumed to be
1.0 mm H,0. The thickness of CCLs and GCLs are
assumed to be 600 mm and 6 mm, respectively. The
flux was computed with air permeability of CCLs
and GCLs corresponding to three different suction
levels, which are 30 mb, 60 mb, and 80 mb,
respectively.

An appropriate reference suction value is the
one that corresponds to the field capacity of the
cover soil. Field capacity of a soil is usually defined
as the water content of the soil after 24 hours of
gravitational drainage. Some soil scientists have



proposed to take the water content of a soil under a
suction of 30 kPa (0.3 bar or 300 mb) to be the field
capacity. Another relevant reference suction value is
the wilting point of the plants is 1500 kPa (15 bar),
beyond which the plants are not able to absorb water
from the soil.

Table 7 is a list of the rate of convective flow
through the desiccated clay liners per unit area.
These results are also graphed in Fig. 16. It is clear
that the gas flux through GCLs is much higher than
the flux through CCLs. It is not only resulted from
the higher air permeability of GCLs but also because
of the fact that CCLs are thicker than GCLs. The
thinness of GCLs caused the hydraulic gradient to be
approximately 100 times higher than that across
CCLs.

Table 7 Convective flux through clay
liners (m*/m?%/day).

Suction 30 60 80

(mb)

Hsin-chu  1.91x10% 2.02x10° 3.26x 107
clay

Chung-li  291x10%? 295x10% 2.98x107
clay

Kaolinite  7.55x10° 7.83x10° 8.89x10°
GCL-A 7.32x10" 3.24x10*> 7.88x10°
GCL-B 1.78x10° 9.87x10® 7.79x10*
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Fig. 16  Gas flux through clay liners.

CONCLUSIONS

The air permeability of both CCLs and GCLs
were measured in this study. The compacted clay
liners, in spite of being infamous for cracking upon
desiccation, have much lower air permeability than
GCLs do. In addition, the air permittivity of CCLs is
also lower than that of GCLs. Although GCLs have
been proved to be effective hydraulic barriers, their
air permeability increases rapidly once they start to
lose pore water. The results of water absorption tests
by Daniel et al. (1993) and water retention tests by
Yao (1998) indicate that GCLs will not maintain
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fully hydrated when they are in contact with soils.
Therefore, GCLs are not as reliable in limiting gas
emission out from the landfills as they are in
preventing water infiltration into the landfills.

Both advection and diffusion should be taken
into account when estimating the gas flux through
the clay liners in a landfill cover system. For
desiccated clay liners with lower water contents,
advection dominates the gas transport. For clay
liners with high water contents, only a very small
amount of gas would diffuse through the material. It
is thus important to maintain the clays in a near
saturation state in order to limit the gas migration.

With regards to the concern on the emission of
landfill gas, the design of final cover system of
MSW landfills must take the high air permeability of
desiccated clay liners into account. It is suggested
that for landfills that are expected to generate large
amount of landfill gas, geomembranes may be a
better choice than clay liners as the hydraulic barrier
for the final covers.

ACKNOWLEDGEMENTS

The authors would like to express their sincere
appreciation toward Mr. Kevin Wu of Newmark
Engineering Products Co., Ltd. for kindly providing
GCL samples for this research.

REFERENCES

Aubertin, M. Aachib, M. and Cazaux, D. (2000).
Evaluation of diffusive gas flux through covers
with a GCL Geotextiles and Geomembranes 18
(2-4), 215-234.

Boardman, B. T. (1993). The potential use of
geosynthetic clay liners as final covers in arid
regions. MS thesis, University of Texas, Austin,
Texas, U.S.A.

Bouazza, A. and Vangpaisal, T. (2000). Gas
advective  flux through partially saturated
geosynthetic  clay  liners.  Advances in
Transportation and Geoenvironmental Systems
Using Geosynthetics, American Society of Civil
Engineering, Geotechnical Speciality Publication
No. 103:54-67.

Clem, J. (1992). GCLs wused successfully in
hazardous waste containment. Geotech. Fabrics
Rep., 10(3):4-7

Daniel, D. E. (1991). Clay liners and covers for
waste disposal facilities, unpublished short course

class notes. University of Texas at Austin, Austin,
Texas, USA

Daniel, D. E. and Benson, C. H. (1990). Water
content — Density criteria for compacted soil liners.



J.  Geotech. and
116(12):1811-1830

Daniel, D. E. and Koerner, R. M. (1991). Landfill
liners from top to bottom. Civ. Engrg., ASCE,
61(12):46-49

Daniel, D. E. and Koerner, R. M. (1993). Cover
systems. Geotechnical practice for waste disposal,
D. E. Daniel, ed., Chapman and Hall, Ltd., London,
England, 455-496

Daniel, D. E., and Richardson, G. N. (1995). The
role of geomembranes and geosynthetic clay liners
in landfill covers. Geotech. Fabrics Rep.,
13(1):44-49

Daniel, D. E. Shan, H.-Y., and Anderson, J. (1993).
Effects of partial wetting on strength and
hydrocarbon permeability of a geosynthetic clay
liner. Proc., Geosynthetics ‘93, Vancouver, British
Columbia, Canada, 1483-1496

Day, R. W. (1998). Discussion of ‘Infiltration tests
on fractured compacted clay,” by McBrayer et al. J.
Geotech. and Geoen. Engrg., ASCE,
124(11):1149-1152

Didier, G., Bouazza, A., Cazaux, D., 2000. Gas
permeability of geosynthetic clay liners.
Geotextiles and Geomembranes 18 (2-4):235-250.

Figueroa, R. A. and Stegmann, R. (1991). Gas
migration  through  natural  liners.  Proc.,
Sardinia 91, 3th International Landfill
Symposium, S. Margherita di Pula, Cagliari, Italy,
167-177

Geoservices, Inc. (1989). Report of moisture
retention tests, Claymax CR, Report to James
Clem Corp., Norcross, Georgia, 14 p.

Koerner, R. M. and Daniel, D. E. (1992). Better
cover-ups. Civ. Engrg., ASCE, 62(5):55-57

Kraus, J. F., Benson, C. H., Erickson, A. E. and
Chamberlain, E. J. (1997). Freeze-thaw cycling
and hydraulic conductivity of bentonitic barriers. J.
Geotech. and Geoenv. Engrg., ASCE, 123(3),
229-238

LaGatta, M. D., Boardman, B. T., Cooley, B. H. and
Daniel, D. E. (1997). Geosynthetic clay liners
subjected to differential settlement. J. Geotech. and
Geoenv. Engrg., ASCE, 123(5):402-410

Manassero, M., Benson, C. and Bouazza, A., (2000).
Solid waste containment systems. Proceedings
International Conference On Geological and

Geoen. Engrg., ASCE,

63

GEOSYNTHETICS ASIA 2012
5™ Asian Regional Conference on Geosynthetics
13 to 16 December 2012 | Bangkok, Thailand

Geotechnical Engineering, Vol. 1, Melbourne,
Australia, 520-642.

Matyas, E.L. (1967). Air and water permeability of

compacted soils. Permeability and Capillary of
Soils, ASTM STP 417. ASTM, Philadelphia,
160-175.

McBrayer, M. C., Mauldon, M., Drumm, E. C. and
Wilson, G. V. (1997). Infiltration tests on fractured
compacted clay. J. Geotech. and Geoenv. Engrg.,
ASCE, 123(5):469-473

Schubert, W. R. (1987). Bentonite matting in
composite lining systems. Proc., Geotech. Pract.
For Waste Disposal "87, R. D. Woods, ed., ASCE,
New York, N.Y., 784-796

Shan, H.-Y. and Daniel, D. E. (1991). Results of
laboratory tests on a geotextile/bentonite liner
material. Proc., Geosynthetics ‘91, Industrial
Fabrics Association, St. Paul, MN, 517-535

Shan, H.-Y. and Yao, J.-T. (2000). Measurement of
Air Permeability of Geosynthetic Clay Liners.
Geotextiles and Geomembranes (18):251-261

Tchobanoglous, G., Theisen, H. and Vigil, S. A.
(1993). Integrated solid waste management.
McGraw-Hill, Inc., 978 p.

Trauger, R. (1991). Geosynthetic clay liner installed
in a new municipal solid waste landfill. Geotech.
Fabrics Rep., 9(8):6-17

Trauger, R. (1992). Geosynthetic clay liners: An
overview. Pollution Engrg., (May 15), 44-47

Trauger, R. J. and Lucas, H. L. (1995). Determining
the flow rate of landfill gas constituents through a
geosynthetic clay liner. Proc., Geosynthetics ‘95,
Nashville, Tennessee, USA, 1085-1096

Vangpaisal, T. and Bouazza, A. (2001). Gas
permeability of three needle punched geosynthetic
clay liners. Proceedings of the Second ANZ
Conference on Environmental Geotechnics,
Newcastle, Australia, 373-378.

Vangpaisal, T. and Bouazza, A. (2003). Gas
permeability of partially hydrated geosynthetic
clay liners. Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol.
130(8):93 - 102

Woodward, B. L. and Well, L. W. (1995).
Alternative cover for saturated, low-strength waste.
Proc., Geosynthetics ’95, Industrial Fabrics
Association International, St. Paul, Minn., 551-562



Rl ¢ B L Py $ AT A RNSENRE R THL

pHp: 102 & 8 * 31 ¢p

NSC 101-2221-E-009 -135 -

2 E
5o
Bl LNAPL % p3é “,$ = ¥ BTEX # % A $e 2 2 Rt
#
1 A B mﬁ% 2 IR AR TR i S N N S JCR 1 - 2o
Rt o BEE
i #
101 & 12 * 13 e _ "
gam | fH¥ [ 3R 3
o 101 # 12 " 16 a Bangkok, Thailand
p
(¥ ) GEOSYNTHETICS ASIA 2012-% 7 E &y ¥4 % 1 & =
=3
FxE e
ia (# < ) GEOSYNTHETICS ASIA 2012 - 5" Asian Regional
Conference on Geosynthetics
(PR)rFA2 B8 82 B
X
~ 42 F (% < ) AIR PERMEABILITY OF COMPACTED CLAYS AND
GEOSYTHETIC CLAY LINERS
- B R

AP G R REE BREE AES E- S TR RS L E SR
TR AL AREFHE o AIFFETRRR G TP FAERE Y
ERAHOETE NS I AR 2 T FRALFLE Bk L 2L
T TR G R SR A o F o dpROTIE D Ry £ E S

LEFVLES S




A A 20121214 T R FEEF A AT B LAROE RS I HFES R
%fuuléq"‘l"‘jé‘li}‘\};}b\'{?,ié—_,ﬁiﬁr}Lm%\m°r‘]w—jk)ﬁ\q)*”j’a
BrERFRA s (AP BERI 2 > UE ol T RRS FH
11"‘/;3) gﬁ’* v )":ffé‘ > A 'ﬁ-{m.i*‘f‘ ’Eﬁ ’f‘F*’F /mﬁ"%‘\"‘ %ﬂ (Tﬁ‘;ﬁ'ﬁi‘
BBI[EENMEE kT S RE) Falg L k‘“ng“—U
WooP AR AR E LA o FIt o - R RERY rER
BT

kA gk R AT

Keynote speech

® Embankments of soft ground and ground improvement , J. Chu

® Geosynthetics for riverbank and coastal protection in Asia, C. Lawson

® Geosynthetics for environmental protection — compatibility and integrity, T.
Katsumi

® Geosynthetics innovation for sustainable engineering, H. Y. Jeon

AEAEYT > MBS LI HEF M AL HELRF LS
HAGDEER R4 & MELEE o RPN RAIS > T2 F PR RI K
oo SHPRS S PPRASS B S g g e
HZ TRy 28 RFTNA e RPALE R EEERF 40
oottt g SR AL WEREER L S € S £ Prof.
Zongberg i& (7= B gk 0 kG M LS €2 e o




osyrﬁhEﬁCS

ACE Ge
ACEGrid :

i




)
=
bl
>y
|
N
M
)
4‘..
Tm
®
D
(@]
=
@D
O

Er R R ARG b sk

AR G B LB 0 2T I < o P R
ﬂ“*ﬂmﬁ%mng%a EREITHE K- AL

7

:1



R
-g:._\
S
o)
, B
L3
e

AFG gAY A kg 0 S AL > B e TIES B
ST BH B G A P AR A E R R D ERIEM BT AR NA
FTHEEALDER PSP BT 2 e L B - Tt b o A e R P
TP A 3E P TR AAP M IR A o BldrdE 2 i%—m]‘E’ KL~ B BRI A
/ﬁi%i@#”wﬁéfﬁk%‘ié & BEip P L BLR R e is
s, E % iﬁ”uzﬁ—i g

Bo1os R H RS B E e g B ’ﬁ}\'ﬁ‘%-ﬁ:ﬁ’lﬁi") 7 € xRk
PN R A &ﬁ+wﬁﬁ*v%ﬁﬁﬁkn%ﬁﬂ?éi

A BERREAAMA L 3 R

RS B BT PR g‘erav Fenigge g R IEAR
I T N R (S R et oY e o) R i
&&*ﬁuL&@%%4“°

o
\_.\

N

P
ok
S
L
T
'
PR
£
/‘Jn
=
T
1
ke
=
xS
N

3%

AR L LA HPEAERFE S LhEa P B AL L EHFT
g Hheo Lot ARAFE R At an? Fp a8 2§ 4 S
f"i‘#‘f‘ﬁﬁ‘ms\lf°

\

K FHRE A 2T 2 i ’Jiiimunﬁ X F'“?&%F‘?’F ;2 Ly
BEE kA BEAFhER 5 on“mﬂ Pl G
A 1 TS FARN BERF S » TP E L IR s A o X 1 g
FRU 1 ARITE K wa&?ﬁ#%4% g LR R g
5 . fttr—]ﬁ_igﬁ_ﬁggpm,\+£i—.£mﬁ)é;',,n’d:‘ r/—luq Z—Jﬁ?f,l:%?*
1 g - BFR 2 EROEPE I ES DR BRI RDP
= .

R L o
L #idgme § (KAhgka)

2. B AL ARM T






Loca e ] womanos |

The Registration Fees which covers the Conference Proceed-

Frof. Dennes T. Bergado Thailand ings, Lunch and Coffee Breaks are as follows:
Dr. Sompote Youwai Thailand -
Mr. Nuttapong Kovittayanun Thailand Parficipants us$ 500
Dr. Suttisak Seralump Thailand IGS Member Us$ 450
Dr. Montri Dechasalkulsom Thailand = -
Dr. Panich Voottipruex Thailand IGS Corporate Member [up ta 5 sach mambars) Us$ 450
Dr. Yip Poon Lai Malaysia Student Parfidpants us$ 250 GEOSYNTHETICS ASIA 2012
Dr. Pham Van Long Vietnam .
s S
INTERNATIONAL ADVISORY COMMITTEE 1310 16 December 2012
For Technical Papers: Banghok, Thailand
Prof. Guangxin Li China Deadline for Abstract Submission 29 February 2012 BULLETIN NO. 7
Prof. Rajagopal India Notification of Abstract Acceptance 30 April 2012 ’
Mr. Gouw Tjie Liong Indonesia Deadline for Paper Submission 15 July 20172 , “ Geosynthetics for Sustainable Adaptation
Dr. Hiroshi Mild Japan Notification ofPa].)mjAm:eptanm 15 Angust 2012 to Climate Change"’
Prof. Han Yong[eon Korea Final I_Japer Submission ) ) 01 October 2012
e e Deadline for Author Registration 01 October 2012
. Thomas ermar ilippines
Dr. Dave Chang ‘West Pacific Region For Student Papers:
Deadline for Abstract Submission 15 July 2012
Deadline for Paper Submission 31 July 2012
TECHNICAL COMMITTEE
[ mmocacomrze el ey e M
, = Final Paper Submission 01 October 2012
Prof. D T. Bergado Thailand/Chairman
— Cﬁ:m Y:: e /Chak Deadline for Author Registration 01 Dctober 2012
Prof. Han Yong Jeon Horea Far Case Histories, Country Reports, Keynote and Theme
Mr. John Cowland Hong Kong Lectures:
Prof. Jun Otani Japan Dearline for Paper Submission 31 Angust 2012
Prof. Jire Kuwano Japan Final Paper Submission 01 October 2012
Prof. Shui Long Shen China Deadline for Author Registration 01 October 2012
Prof. ¥iao Wu Tang China
Prof. San Shyan Lin Taiwan 3
Dr. Ennio Palmeira Brazil According to the International Geosynthetics Society regulations,
Dr. Abdelmalek 1i participants may have only one paper as first quthors (no limit for
Mr. Mike Sadlier Australia co-guthoring papers). Chapters of IG5 may submit up to 3 “Case
Mr. Sam Allen USA Histories of Gensymthetics Engineering Practice” in addition to indi-
vidual submission.

L == Contc formation

GAZ012 will be held at Centara Grand at Central Plaza
Ladprao Bangkok (CGLE), a newly rencvated 5-star hotel F GA2012 Secretariat 3
superhly located near the elevated highway system, the un- c,-‘oiss\jan %“m fwﬁS{;ﬁ] D“WE’“BEM “Pi‘&mﬁ
derground Mass Rapid Transit and the BTS Skytrain. CGLB an Instituds o Echnalory. Hanpk, K
- s o bhumi Inte A E-mail: geosyntheticsasia2012@gmail.com

Technulogy

Usder the waspiees uf

port which takes just over 30 minutes. It also has a direct Conference Chairman: Prof Dennes T Bergado
link to the Central Plaza shopping complex through a cov- E-mail: bergado@aitacth !&
ered walkway. Intersational sy sthatics

‘wehsite: http:/ /geosynthetics-asia2012.com,

Sahuty



e —— =

(GA2012)




T EE R 4 M 4

Friday, 14th December 2012

0830 -09:15

Crepsynthetics for environmental protection — comparibilify and mtegmity —
Eeynote Lecaure 3 - T. Katiumi Chair- P. H. Giae
Co-Chair- W, Eonghitknl!

015 -09-35

Award Ceremony

0045 - 10:13

Coffes Break and Trads Expo

1k15-11:00

5 e o = —
Keynote Lecaire 4 - H F. Jeon Chair- &, Chandra
Cio- Chair- 5. Fouwar

Technical Committee on Barriers Session
Chair- K. F. Von Maubeuge
Co-Chair- N. Tonzge-Foliz

T10 - 1110

rLLYS i mufigate nanmal comammation Tom excavated rocks
T. Karsumi

11:10-11:20

A Irferaturs review on lifetme prediction of tus HDPE peomembranes m the
exposed eovironment
R Demis

11:20 - 11:30

Hydraulic performance of peosynthetic clay lmers (GCLS) compared with
compacted clay liners (CCLS) in landfill Ining systems
K P von Maubenge

11:30 - 11:40

Peel and shear test companson and geosynthetic clay liner shear strenzth
comelation
K P von Mioubenge

11:40 - 11:50

Flow rate in composite liners inchiding GCLS and binuminos
peamembranses

H Bannanr

11:50 - 12:00

Creptextile barmiers m the failing dump inwash technolozy in permatiost
TREIOL
A B. Loloev

1200 — 13:00

Lunch at Rooms: Lardprao Suite and Enmpgthep 2

Technical Committee or Reinforcement Session
Chair- F. Mivata
Co-Chair- G Brau

13200 - 13:10

Behaviar of peosynthetics reinforced walls in back-to-back confipuration
C 5 Yoo

EBGEOZ010 — experience with Gemman design procedures for peosynthetics
reinforced sorucrires
G. Briu

13:20-13:30

Eeal-time monitormz for peosynthetics einforced svstems
T Abdonn

13:30 - 13:40

A pew rype remforced sol strocture with msering pile foundation
T Hara

13:40-13:50

Load ransfer mechanizm of peocells
A Emersiehen

13:50-14

Effect of geoenid fype on performance of reinforced dense-praded agevezate
base
R Ghabeht

14:00 - 14:30

Coffes Break and Trade Expo




Ballroom B Ballroom C
Environmental FibersTnnovations
Chair- 5. Seralump Chair- P. Vosttiprae
Co-Chair- 4 Ridrong Co-Chair- P. Jamzawang
14:30 - 15:00 | Geomembranes in mining waorks Sustainable infrasmochre
3oel incldine Hmited life

o e L T ok — whem B it 3|

. Theme Lecture 4 - £ Rajagopal

1= =17

15200 - 15:10

Air permeability of compacted clays
and geosynthetic clay liners

H. ¥ Shan

Experimental stady on natumal
iu.u:b:»u- geoprid encazed stone
alunm

1 SN Mandal

o] ] 5

e ilamec ofha g chene nd  m—
imternal friction angle of sand on.
ultimate capacity of sand-bag by
using analytical and oomerical
mnalysis

A. Hoddad

Application of fiters from Sabai
grass in construction of subbaze of
roads m conjunction with sands

S Muairy

1520 - 15:30

Groumd improvement with geetextls
reinforcement: case studies —
embankment over soft clay m

Preponderance of jute as geotexiles

Apstralia and shudze pond capping in
Chira
W.C. Lok T. Sanyal
15:30-15:40 | Cepirifuge model tests on the Smudy oo impact absorbency of soil
connecting form betwesn cut off wall | miwed with crushed EPS waste -
and compasite geomembane of relation to the deformation
cofferdam charactenistics of sod -
B Li T. Kt
15:40 - 15:50 | A feasibility stady for the drainage Dieformation and strensth
mnd proection of GMC (Geo charactenstics of lishtweizht
Mulficell Compasite) as a leachate geomarerial mied with EPS beads
collection system in landfill for suberads
J H Kim K Yamanaka
15:50- 16:00 | Hansing baz test of shudze fler Experimental stady on ons-
thromzh geotextiles dimension compression and creep
charactenistics of EPS in the
application for stabilizmg slape of
expansion soil canal
LCWu W. Eou
16000 - 16:10 | A study oo using waterproof asphalt | Experimental stody on the thermal
to make fost heave-resistant conductivity of lght soil mixed with
draina pe difches EPS particles
T Adachi G L
16:10 - 16:30 | The study on swellmg indsx of Eco-fnendly ensinesring
sodium bentonite under differsnt performance evaluaden of PLA
conditicns geosynthetics
P Wu

H. T Jeon




GEOSYNTHETICS ASIA 2012
5™ Asian Regional Conference on Geosynthetics
13 to 16 December 2012 | Bangkok, Thailand
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ABSTRACT

Two of most important functions of a landfill cover are to minimize the infiltration of water and to control
the emission of landfill gas. Compacted clay liner (CCL), geosynthetic clay liner (GCL), and geomembrane (GM)
are the three major types of hydraulic barrier materials used in the bottom lining systems as well as cover
systems of landfills. However, it is well recognized that clay liners crack upon desiccation. The cracked liner
may enhance the capacity to conduct fluid, which not only increase the infiltration of the downward moving
water but also the emission of upward moving gas. Laboratory air permeability tests were conducted to quantify
the rate of air passing through desiccated clay liner specimens. In addition, the equilibrium water content of clay
liners in the field condition is also studied. The results show that desiccated clay liners may allow considerable
amount of landfill gas to pass through. In addition, the air permeability of desiccated GCLs are much higher than
that of desiccated CCLs. Accordingly, it is suggested that geomembranes should be used to contain landfill gas
for landfills located in areas where landfill gas emission are to be controlled effectively.

Keywords: landfill, clay liner, air permeability, landfill gas emission

INTRODUCTION

In recent years, landfill gas emission has raised
considerable concerns since methane is a major
greenhouse gas. As a result, for closed landfills, the
effectiveness of the cover system to control the
emission rate of methane and non-methane organic
compounds (NMOCs) needs to be assured. Gas
passes through the landfill cover system by means of
advection and molecular diffusion. In MSW landfills
where large amount of gas is produced, the internal
pressure is usually greater than atmospheric pressure
such that landfill gas will be released not only by
diffusion but also by pressure-driven advection. In
the meantime, the natural fluctuation of atmospheric
pressure can also cause gas to flow into or out of the
landfill. Furthermore, a change in leachate/water
table or difference of temperature across the cover
system may also lead to gas migration. In many
cases, the temperature within the landfill reaches
higher than 40°C due to the heat generated by the
anaerobic degradation process (Tchobanoglous et al.
1993).

Gas movement by diffusion is driven by gradient
of concentration. When a gas is more concentrated
in one region of a mixture more than another, it will
diffuse into the less concentrated region. Thus the
molecules move in response to a partial pressure
gradient or concentration gradient of the gas. The
present paper will focus only on advective transport.

Figueroa and Stegmann (1991) performed
several field tests on a 0.6 m-thick soil cover
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(SC-SM) at a German landfill. They found that the
landfill gas flow rates ranged from 5.2 x 10 t0 9.6 x
10 m*/m?s. They suggested that the dominant gas
transport mechanism was advection.

In most of the modern landfills, compacted clay
liner (CCL), geosynthetic clay liner (GCL), and
geomembrane (GM) are the three major types of
hydraulic barrier materials used in the bottom lining
systems and cover systems.

Many landfills have used compacted clays as
hydraulic barrier in the cover system since the
hydraulic conductivity of well-constructed CCL can
be as low as 1 x 10" m/s and can meet the
regulatory requirements. However, the major
disadvantage of compacted clay liner is that they
will crack as a result of desiccation, freeze-thaw
cycles, and differential settlement (Koerner and
Daniel 1992, Daniel and Koerner 1993). For clay
minerals with high swelling potential, the cracks
may heal upon rehydration. Kraus et al. (1997),
McBrayer et al. (1997), and Day (1998) have looked
into the phenomenon of crack-healing of compacted
clay. Furthermore, Day (1998) suggested that an
important factor in the healing of cracks upon
wetting is the type of clay mineral. He stated that for
montmorillonite  the  desiccation cracks are
completely healed upon wetting. The hydraulic
conductivity of cracked Otay Mesa natural clay
specimen decreased from 7 x 107 m/s to 3 x 10™°
m/s as a result of healing of cracks.

Geosynthetic clay liners have not only been used
in bottom liners for landfills and surface



impoundments (Schubert 1987; Daniel and Koerner
1991; Trauger 1991, 1992; Clem 1992), but also in
final covers for landfills and remediation projects as
well (Koerner and Daniel 1992, Daniel and
Richardson 1995; Woodward and Well 1995). The
main advantages and disadvantages of GCLs have
been discussed by Boardman (1993) and Manassero
et al. (2000) amongst many others.

Although GCLs are usually installed to limit
advection of liquids (e.g., water through a cover
system) they may also serve an important role in
covers as a gas barrier. Theoretically, hydrated
GCLs as well as wet compacted soils should hardly
allow any gas to pass through (Daniel, 1991).
Nevertheless, Trauger and Lucas (1995) did measure
the rate of methane gas migrating through GCLs via
diffusion. Their results show that the rate of gas
transport through GCL was very low as long as its
water content was greater than 90%. The permeance
is about 2 x 10 m/s for GCL sample with a water
content of around 50% and drops below 1 x 10 m/s
when water content reached above 90%. This
suggests that the gas permeability of GCLs is
dependent on the water content.

GCLs are known to have a phenomenal ability to
retain moisture such that they might have the
potential to be effective barrier to gas migration.
Research on GCLs buried in sands showed that they
were able to absorb water from the environment
very quickly why buried dry or hardly lose any
water when buried saturated (Geoservice, 1989;
Daniel et al., 1993).

With GCLs being increasingly used as part of the
capping, their gas performance has come under a
growing scrutiny. Recent work has shown that the
gas permeability of GCLs is affected by the
manufacturing process and the form of bentonite
(Didier et al., 2000; Bouazza and Vangpaisal, 2000;
Shan and Yao, 2000; Aubertin et al. 2000;
Vangpaisal and Bouazza, 2001, 2003).

This paper presents a test method developed
speci.cally to assess the gas permeability of GCLs. It
is based on the method developed by Matyas (1967)
for the measurement of air permeability in soils. The
testing apparatus has been designed to accommodate
the GCL sample and gas. Flowmeters are used to
monitor gas outflow from the device. The test
method offers the possibility of carrying out gas
permeability tests at different pressure gradients and
confining stresses.

EXPERIMENTAL PROGRAM

The air permeability of soil depends on factors
such as the size and number of cracks, the air
porosity (n,), and the degree of saturation. Many of
these factors are dependent on each other or on some
other factors. For example, the degree of saturation

12

GEOSYNTHETICS ASIA 2012
5™ Asian Regional Conference on Geosynthetics
13 to 16 December 2012 | Bangkok, Thailand

depends on both the water content and the void ratio.
Among these factors, the air permeability of soils is
most sensitive to the variation of degree of
saturation. On the other hand, the void ratio of a clay
liner in the cover system will be almost constant,
since effective stress is kept unchanged throughout
the service period. Therefore, the degree of
saturation solely depends on water content.
Furthermore, the cracking of clay liners is also
closely related to the water content. Therefore, in a
cover system, the water content is the single most
important factor that affects its air permeability of a
clay liner. As a result, this research focused on
determining the effect of water contents on the air
permeability of the clay liners.

Materials

The three clays selected to represent the
compacted liners were kaolinite, Hsin-chu clay, and
Chung-li clay. The properties of the clays are listed
in Table 1.

Table 1 Properties of soils samples.

Soil Finer LL* PL* PI* G, USCS
than #200
sieve (%)
Hsin-chu  48.88 254 21.1 43 258 SM-S
clay C
Chung-li 9251 585 22 365 265 CH
clay
Kaolinite 100 56.5 41.1 154 271 MH

Note:*Portion Finer than #40 Sieve s

The CCL samples were compacted with 48% of
the energy produced by standard Proctor compaction
test. The results of the compaction tests are listed in
Table 2 and the compaction curves are shown in Fig.
1. The shrinkage limits of the bentonite in the clays
were determined according to standard test method
ASTM D427-92 and are listed in Table 3. The
results of hydraulic conductivity of the CCL
specimens are listed in Table 4.

Table 2 Results of compaction tests.

Soil [T max Optimum
(glem®) water
content (%)
Hsin-chu clay 1.72 18
Chung-li clay 1.48 27
Kaolinite 1.27 36

Note: Specimens were compacted with 48% of
Standard Proctor compaction energy.
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Fig. 1 Compaction curves of clays tested.

Table 3 Shrinkage Limit of Soils.

Soil Shrinkage Volume
limit (%) change (%)
Hsin-chu Clay 16.7 15.61
Chung-li Clay 19.6 39.88
Kaolinite 40.5 30.64

Table 4 Results of fixed-wall hydraulic conductivity

tests.

Soil k (m/s)
Hsin-chu Clay 4.6 x 107
Chung-li Clay 1.2 x 10°

Kaolinite 2.8x10°

Note: Hydraulic gradient = 100.

The two GCLs tested in this study were a
needle-punched GCL and a stitch-bond GCL, which
will be designated as GCL-A and GCL-B,
respectively. GCL-A is comprised of a nonwoven
needlepunched geotextile that is needle punched
again through a layer of bentonite into a woven
slit-film geotextile. The bentonite content is 3.6
kg/m?. The water content of the bentonite in dry
GCL-A is about 10 - 12%. In GCL-B, 3.6 kg/m? of
bentonite is sandwiched between woven geotextile
on the top and open weave geotextile at the bottom.

The shrinkage limits of the bentonite in the
GCLs are listed in Table 5. It is interesting to note
that the shrinkage limits of the bentonite are very
low comparing to the high water content of saturated
bentonite.

Table 5 Results of shrinkage limit tests on bentonite

in the GCLs.
GCL Shrinkage  Volume
limit (%) change (%)
GCL-A 35.2 87.86
GCL-B 29.9 88.15
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Water Retention Test

Clay liner specimens were placed under 0.5 m of
moist sand and loosely compacted moist clay in two
86-liter plastic buckets separately. The specimens
had been allowed to absorb water under dead
weights that imposed a vertical stress that is
equivalent to 0.5 m of soil before they were put in
the buckets. The test was performed over a 90-day
period spanning from March to May. The monthly
average temperatures were 17.2°C, 21.1°C, and
24.6°C, respectively. The average humidity during
the test period was about 85%. The suction in the
cover soils was monitored with tensiometers.

The soil water characteristics of the clay liner
samples were determined with a 15-bar pressure cell.
The main drainage curves (MDC) of the compacted
clay specimens are shown in Fig. 2. The specimens
were soaked to enhance saturation before the test.
On the other hand, the specimens of water retention
tests were placed in the surrounding soils
immediately after they had been cut from the
compacted samples. As a result, the water contents
of the retention test specimens were a little less than
those indicated by the MDC.

1000 -
900 | —e—Hsin-chu clay
800 L —a—Chung-li clay
g\ 700 | —a—Kaolinite
X< 600
E 500 |
S a0 |
200 |
100
0 > - ! &
0 20 40 60
Volumetric Water Content (%)
Fig.2 Soil water characteristic curves of

compacted clay samples.
Air Permeability Test

The diameter and the height of the CCL
specimens were 101.6 mm and 195 mm,
respectively. The clays were compacted at a water
content 2% wet of optimum with 48% of standard
Proctor compaction energy. In order for the cracks to
develop more easily, it was decided to use shorter
CCL specimens. Therefore, the specimens were
compacted in a compaction mold of reduced size.
The compacted samples were trimmed and then
retrieved from the compaction mold.

The GCL specimens were cut from the rolls
supplied by the manufacturer to a diameter of 114.5
mm. The specimen was placed in an acrylic mold
with an inner diameter of 114.5 mm. The specimen
was then hydrated with tap water for 1 day.

Both CCL and GCL specimens were placed



inside an oven and heated under a temperature of
around 35°C for a given period of time. During the
desiccation period, a dead load weighing 4 kg was
put on top of each specimen to provide a normal
stress equivalent to that created by 300 mm of
topsoil. In addition, the CCL specimens were put on
top of a sheet of sand paper to prevent them from
shrinking as a whole so that cracks could develop.
This process was repeated for different drying times
to obtain specimens with various water contents.

The air permeability tests of CCL specimens
were performed with flexible-wall permeameters
(Fig. 3). During the tests, a low cell pressure of 3.5
kPa (0.5 psi) was applied to ensure good contact
between the membrane and the specimen.

D)

—

Influent Air

F—
O

Confining
Pressure

Effluent Air to
Flowmeter

-

Fig. 3 Schematic diagram of the compacted clay
air permeability testing system.
Fig. 4 shows the schematic diagram air

permeameter for testing the GCL specimens. GCL
specimens were clamped between two ring-shape
holders. Bentonite paste was placed along the edges
of the specimens to prevent air leakage.

Influent
air

!

Head Difference
Measurement

[hiB

Fig. 4 Schematic diagram of the permeameter for
measuring air permeability of GCL (Shan
and Yao 2000).

Effluent Air fo
Flowmeter

For testing of both types of materials, the flow
rate of air was adjusted by regulating influent air
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pressure with the pressure control panel (Fig. 5).
Very low influent air pressure was used for the tests
(less than 2 kPa). The range of flow rate was as high
as 27 I/min for the more permeable specimens under
larger gradients and as low as 0.5 I/min for less
permeable specimens under smaller gradients. The
head loss across the specimen was measured by
U-tube manometer. For each specimen, head
differences corresponding to 5 different flow rates
were measured. The linear relationship between flow
rate and gradient justified that the gas flow was in
the laminar range. The test results of one of the
compacted Chung-li clay specimen are shown in Fig.
6 as an example. After each test, the water content
and the dimensions of specimen were measured.

Flowmeter

o

Air Pressure
Control Panel

0 c)
U-Tube
Manometer
Fig.5 Schematic diagram of the gcl air
permeability testing system (Shan and Yao
2000).
1E-3 .
1E-3 } y = 8E-05x
> R2=0.984
T 8E4 |
L 6E4 |
g
z 4E-4 |
o 2E4 |
0 E+0
0 5 . 10 15
Gradient

Fig. 6 Relationship between flow rate and gradient
of air permeability tests.

The air permeability of the specimens was
computed with the following equation:

_ q/A (1)

(Ahtotal - Ahequipment j
t

where [ /hta 1S the total head loss measured (mm);
[hequipment IS the head loss of system without
specimen in it (mm); k is the air permeability (mm/s).



The compressibility of air has been taken into
account when computing the flow rates that passed
through the specimens from the values measured
with the flowmeter.

RESULTS AND DISCUSSION
Water Retention Tests

Results of the water retention tests show that the
hydrated GCLs did not have a strong ability to retain
water. The variations of the water content of GCL
specimens with time are shown in Fig. 7. The final
water content of GCL-A and GCL-B buried in sand
are 48% and 53%, respectively. The final water
content of GCL-A and GCL-B buried in clay are
27% and 28% which are lower than the shrinkage
limit of bentonite. The water contents of the
specimens at the end of the tests were much lower
than those reported by Geoservice (1989). On the
other hand, the final water contents of the specimens
are comparable to the results of absorption tests
performed by Daniel et al. (1993).

200
180
160
140
120
100

—=—GCL-A
——GCL-B
—a— Kaolinite
—— Chung-li Clay
—*— Hsin-chu Clay
—8—GCL-A
—>—GCL-B
—=a— Kaolinite
—O— Chung-li Clay
—>— Hsin-chu Clay

in sand

Gravimetric Water Content (%)

0 20 40 60 80
Time (day)

100

Fi

g.7 Variation of water content of CCL and
GCL specimens with time.

The CCL specimens also lost considerable
amount of water during the test period. The
difference between final water contents of
specimens buried in sand and clay is most
significant for kaolinite. On the other hand, only a
small difference in water content was measured for
Chung-li clay. In addition, the final water contents
of kaolinite and Hsin-chu clay were all lower than
their shrinkage limits. By comparing the results with
the index properties, it can be concluded that clays
with higher plastic limit are capable of retaining
more water.

Air Permeability Tests on CCLs

The relationship between air permeability and
water content of CCLs are depicted in Fig. 8(a), Fig.
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9 (a), and Fig. 10 (a). The air permeability of the
compacted clay specimens shows a slight increase as
the water content decreases. The trend is most
obvious for kaolinite.
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(c) Relationship between volume change and water
content
Fig. 8 Relationship between air permeability,
water content, and shrinkage of compacted
hsin-chu clay.

Among three CCLs, kaolinite has the lowest air
permeability while Hsin-chu clay has the highest. It
is interesting to note that the hydraulic conductivity
of Hsin-chu clay is also the highest among the three
clays (Table 4).



The increase of air permeability with decreasing
water content did not seem to be solely related with
the increased number of cracks. The cracks
developed before the water content of the specimens
fell below the shrinkage limit. The loss of water of
clay particles along the cracks might actually widen
the pathway for air.
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Fig. 9 Relationship between air permeability,
water content, and shrinkage of compacted
chung-li clay.
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Fig. 10 relationship between air permeability, water
content, and shrinkage of compacted
kaolinite.

The relationship between the air permeability
and shrinkage of the clay specimens are shown in
Figs. 8 (b), Fig. 9 (b), and Fig. 10 (b). Only the air
permeability of compacted kaolinite decreased at the
same time when it shrank (Fig. 10(b)). For Hsin-chu
clay and Chung-li clay, there did not seem to be any
relationship between air permeability and shrinkage
(Figs. 8 (b) and 9 (b)). Again, the reason is that the
air permeability of the CCLs is related to the
widening of the cracks rather than the reduction of



the total volume.

It is interesting to note that the optimum water
content of Hsin-chu clay and Chung-li clay are
higher than the shrinkage limits whereas the
optimum water content of kaolinite is lower than the
shrinkage limit. As a result, the volume change of
kaolinite specimens was only about 1/3 of the
volume change determined from shrinkage limit test,

while this ratio was about 1/2 for the other two clays.

In addition, kaolinite has more fine particles and
lowest plastic index value. These factors may
contribute to the low air permeability of desiccated
kaolinite.

On the other hand, the content of fines of
Hsin-chu clay is slightly below 50% such that the
sand particles may be in contact with each other.
Therefore, as the water content decreases, the clay in
between the sand particles shrank and pathways of
air formed. As a result, Hsin-chu clay had higher air
permeability than the other two types of CCLs.

Theoretically, the volume of the clays does not
change after the water content dropped below the
shrinkage limit. However, as shown in Figs. 8 (c)
and 9 (c), for Hsin-chu clay and Chung-li clay, the
specimens still experienced noticeable volume
change when dried to a water content below the
shrinkage limit. In addition, visual observation
showed that as the water content decreased, the
number of cracks remained approximately the same.
The water left in the desiccated specimens either
occupied the smallest pores or adhered to the surface
of the clay particles. Further decrease of water
content made the pathways become wider and
allowed faster flow of air. As a result, the air
permeability of Hsin-chu clay and kaolinite
increased slightly as the water content decreased
below the shrinkage limit (Figs. 8 (a) and 10 (a)).

On the contrary, for Chung-li clay, which has
more than 90% of clay-size particles and the highest
plastic index value, the air permeability remained
almost unchanged when dried beyond the shrinkage
limit (Fig. 9 (a)). It is noted that the desiccated
Chung-li clay specimens shrank considerably with
decreasing water content although the water content
is lower than the shrinkage limit (Fig. 9 (c)).
However, it is possible that compacted Chung-li clay
liner may have much larger cracks than the other
two clays in the field such that air will flow through
it more easily.

The air permeability of the CCL specimens with
water content drier than their shrinkage limits are
listed in Table 6. Desiccated Kaolinite has the lowest
air permeability, followed by Chung-li clay and then
Hsin-chu clay. Daniel and Benson (1990) have
concluded that compacted sandy clay (SC) is best
suitable for hydraulic barrier because it has low
permeability, high shear strength, and low shrinkage
potential. However, the Hsin-chu clay (SM-SC),
which consists of about 50% of sand has the highest
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air permeability. The most possible reason is that air
not only passed through the cracks but also through
the primary pores more easily than the other two
clays. Although the structure formed by sand
particles in contact with each other made the soil
have low shrinkage potential, it also had larger
pathways for air to go through when the clay shrank.
The pathways were developed as the clay particles
between the sand particles shrank such that
additional pore space became available for
transmitting air. Shrinkage of this scale is difficult to
be measured or even be observed by visual
inspection.

Table 6 Average air permeability of compacted
soils drier than shrinkage limit.

Soil Ka (m/s)
Hsin-chu Clay 2.8x10°
Chung-li Clay 8.2x10*

Kaolinite 2.7x10*

The ability of CCLs to transmit air can also be
expressed as the permittivity to air in order to allow
for comparison between barrier materials with
different thickness. The permittivity is computed
with the following equation:

g (2)
Ah x A

— =

k
t

The relationships between the air permittivity of
CCLs and water content are shown in Fig. 11.
Although the data are scattered considerably, it is
obvious that the air permittivity values of desiccated
CCLs are sensitive to the change of water content.

1.0E+00
+ Hsin-chu clay

@ 1.0E-01: & . ED O o Chun_—l_i clay
= + 00 229 Py 0 - | A Kaolinite
> 10E-02 +}2 y - 8
= LA Oe '
E L1003 S
& N . |

1.0E-04

El * A._._:.
1.0E-05 o ‘ 1
0 10 20 30 40 50
Water Cotent (%)

Fig. 11 Air permittivity of compacted clay liners.

Air Permeability Tests on GCLs

Since the results of air permeability tests of
GCLs has been described in detail by Shan and Yao
(2000), only a summary of the results is presented



here. The relationships between air permeability and
water content for GCL-A and GCL-B are shown in
Fig. 12. For GCL-B specimens with water content
higher than 190%, no flow of air was observed. On
the other hand, it was unable to detect any flow of
air for GCL-A specimens with water content higher
than 170%. It can be clearly seen that air
permeability increases as the water content
decreases. The relationship between air permeability
and water content of GCL-B is much clearer than
that of GCL-A.

1.0E+0
@ 10E-1 |
E
2
= 10E-2
3
E
& 10E3
< ¥ = 7345.9x29%1
lOE_4 I I I I I I I
40 60 80 100 120 140 160 180 200
Water Content (%)
Fig. 12 Relationship between air permeability and

water content of GCLs (Shan and Yao,
2000).

Cracks could be observed for GCL-B specimens
with water content lower than about 140%. The
bentonite in these specimens formed chunks of about
1 cm2 such that the GCL developed a network of
wide-open cracks (Fig. 13). For specimens with very
low water content, the cracks were as wide as 3 mm.
A similar pattern of desiccation cracks of GCL-B
specimens have been reported by Shan and Daniel
(1991), Boardman (1993) and LaGatta et al. (1997).
For GCL-B specimens with water content higher
than about 140%, only barely visible hairline cracks
in the bentonite was observed.

25 mm

Fig. 13 Crack pattern of GCL-B specimens.

On the other hand, there was no network of large
cracks found in the desiccated GCL-A specimens.
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Instead of forming large chunks, the bentonite in the
GCL-A specimens shrank to form small granules as
when it was manufactured. The needlepunched
fibers seemed to prevent the bentonite from forming
chunks during the drying process. As a result, the air
permeability of desiccated GCL-A specimens was
much lower than that of GCL-B specimens.

The relationships between the air permittivity of
GCLs and water content are shown in Fig. 14. The
air permittivity values of desiccated GCL-B are
much higher than those of desiccated GCL-A for
water content ranging from 50 - 150%. Beyond
150%, the air permittivity of both GCLs is very low.

1.0E+02
D
o 1.0E+01
P
=
E 1.0E+00 |
[}
[« N
1.0E-01 |
1.0E-02 : :
50 100 150 200
Water Content (%)

Fig. 14 Air permittivity of GCLs.

The air permittivity of 3 CCLs and 2 GCLs are
compared in Fig. 15. The air permittivity of
desiccated CCLs is much lower than that of
desiccated GCLs. This means that desiccated GCLs
will allow air to pass through more easily.
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Fig. 15 Air permittivity of clay liners.

PRACTICAL IMPLICATIONS

The emission rate of the landfill gas can be
estimated for a landfill under specific conditions.
The rate of convective flow of landfill gas through
clay liners can be computed with Darcy’s law. In
order to compare the flux through CCLs and GCLs,
the following field condition is assumed. The head
difference across the barrier layer is assumed to be



1.0 mm H,0. The thickness of CCLs and GCLs are
assumed to be 600 mm and 6 mm, respectively. The
flux was computed with air permeability of CCLs
and GCLs corresponding to three different suction
levels, which are 30 mb, 60 mb, and 80 mb,
respectively.

An appropriate reference suction value is the one
that corresponds to the field capacity of the cover
soil. Field capacity of a soil is usually defined as the
water content of the soil after 24 hours of
gravitational drainage. Some soil scientists have
proposed to take the water content of a soil under a
suction of 30 kPa (0.3 bar or 300 mb) to be the field
capacity. Another relevant reference suction value is
the wilting point of the plants is 1500 kPa (15 bar),
beyond which the plants are not able to absorb water
from the soil.

Table 7 is a list of the rate of convective flow
through the desiccated clay liners per unit area.
These results are also graphed in Fig. 16. It is clear
that the gas flux through GCLs is much higher than
the flux through CCLs. It is not only resulted from
the higher air permeability of GCLs but also because
of the fact that CCLs are thicker than GCLs. The
thinness of GCLs caused the hydraulic gradient to be
approximately 100 times higher than that across
CClLs.

Table 7 Convective flux through clay liners
(m*/m?/day).
Suction 30 60 80
(mb)
Hsin-chu 1.91 x 2.02 x 3.26 X
clay 10 10 10
Chung-li  2.91 x 2.95 x 2.98 x
clay 10 10 10
Kaolinite 7.55 x 7.83 x 8.89 x
107 107 107
GCL-A 7.32x 3.24 x 7.88 x
10 10 10
GCL-B 1.78 x 9.87 x 7.79 X
10° 10° 10*
1.0E+5
LOE+4 | B/
> LO0E+3 |
% LOE+2 r '/.fl-isi;-chu clay
E o e
x 1.0E+0 —o—-GCL-A
I__f Lo | -8-GCL-B
10E-2 | E—‘:’/j
1.0E-3 L L L

20 40 60 80
Suction (mb)

100

19

GEOSYNTHETICS ASIA 2012
5™ Asian Regional Conference on Geosynthetics
13 to 16 December 2012 | Bangkok, Thailand

Fig. 16 Gas flux through clay liners.

CONCLUSIONS

The air permeability of both CCLs and GCLs
were measured in this study. The compacted clay
liners, in spite of being infamous for cracking upon
desiccation, have much lower air permeability than
GCLs do. In addition, the air permittivity of CCLS is
also lower than that of GCLs. Although GCLs have
been proved to be effective hydraulic barriers, their
air permeability increases rapidly once they start to
lose pore water. The results of water absorption tests
by Daniel et al. (1993) and water retention tests by
Yao (1998) indicate that GCLs will not maintain
fully hydrated when they are in contact with soils.
Therefore, GCLs are not as reliable in limiting gas
emission out from the landfills as they are in
preventing water infiltration into the landfills.

Both advection and diffusion should be taken
into account when estimating the gas flux through
the clay liners in a landfill cover system. For
desiccated clay liners with lower water contents,
advection dominates the gas transport. For clay
liners with high water contents, only a very small
amount of gas would diffuse through the material. It
is thus important to maintain the clays in a near
saturation state in order to limit the gas migration.

With regards to the concern on the emission of
landfill gas, the design of final cover system of
MSW landfills must take the high air permeability of
desiccated clay liners into account. It is suggested
that for landfills that are expected to generate large
amount of landfill gas, geomembranes may be a
better choice than clay liners as the hydraulic barrier
for the final covers.
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