
1 Introduction

The prediction interval (PI) is a very useful tool to predict the future observations,

that can be used to predict the disease count in a population for medical applications.

Since the number of diseased patients in a population follows a binomial distribution, in

this paper, we investigate prediction intervals for the binomial distribution.

The construction of prediction intervals for continuous distributions has been exten-

sively studied in the literature (Basu, Ghosh and Mukerjee 2003; Hall and Rieck 2001;

Hamada, Johnson and Moore 2004; Lawless and Fredette 2005; Olive 2007; Cai, Tian,

Solomon and Wei 2008; Patel 1989). However, compared with the continuous distri-

butions, there are fewer investigations for discrete distributions. The most widely used

closed form prediction interval for a binomial random variable was proposed by Nelson

(1982). Another prediction interval with a closed form was proposed by Bain and Patel

(1993). In addition, prediction intervals with associated numerical calculation to achieve

desired coverage probability were introduced in Patel and Samaranayake (1991) and Wang

(2008). Although the last two approaches can provide accurate coverage probabilities for

the prediction intervals, they heavily rely on numerical calculations and can not provide

closed forms. Since a prediction interval with a closed form can be easily employed in
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applications, in this paper, we explore approximate prediction intervals with a closed

form.

The coverage probabilities for the Nelson interval and the Bain and Patel interval do

not perform well when the true binomial proportion is near the boundaries because the

coverage probability is much lower than the nominal level as the binomial proportion goes

to 0 or 1. In addition, the average coverage probabilities of these two intervals, averaged

over the parameter space, are also unsatisfactory. Especially from a simulation study,

when the sample size is not large, the average coverage probabilities of these two intervals

are much lower than the nominal level.

In this paper, two improved prediction intervals are proposed by inverting the score test

and by adjusting an existing interval. The coverage probabilities of these two proposed

prediction intervals are significantly higher than those of the existing intervals when the

true proportion is close to the boundaries.

In addition, the two new intervals are evaluated by comparing their corresponding

predictive distributions in terms of the Kullback-Leibler distance criterion. The calcula-

tion results show that the distance of the score predictive distribution from the binomial

distribution is shorter than that of the adjusted predictive distribution.
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2 Existing prediction interval

We present several existing prediction intervals in this section. The first of these is the

prediction interval for a binomial random variable constructed by Nelson (1982), which is

reviewed in Hahn and Meeker (1991). Suppose that the past data consist of X successes

out of n trials from a B(n, p) distribution with a successful probability p, 0 < p < 1.

Let Y be the future number of successes out of m trials from a B(m, p) distribution.

A large-sample approximate level γ two-sided prediction interval (L(X), U(X)) for the

future number Y of occurrences based on the observed value of the number X of the past

occurrences for the binomial distribution constructed by Nelson (1982) is

Ŷ ± z(1+γ)/2(mp̂(1− p̂)(m+ n)/n)1/2 (1)

where p̂ = X/n and Ŷ = mp̂ when X,n − X,Y andm − Y all are large. Here z(1+γ)/2

denotes the upper (1 + γ)/2 quantile of the standard normal distribution. Note that

the true coverage probability of the interval (L(X), U(X)) at p = p0 is defined as the

probability Pp0(L(X) < Y < U(X)).

The second level γ prediction interval was proposed by Patel and Samaranayake (1991).

This uses the form (0, X + d) as an upper prediction interval or (X − d,m) as a lower

prediction interval for Y , where d is a positive integer. To guarantee that the coverage
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probability of the upper prediction interval (0, X + d) is greater than or equal to γ, the

exact coverage probability of the interval is derived and it is necessary to find a positive

integer d such that its coverage probability is greater than γ for all p. It turns out that

the derivation of d is to find the smallest integer d satisfying

Inf0≤p≤1

n∑
x=0

(
n

x

)
px(1− p)n−x(

x+d∑
y=0

(
m

y

)
py(1− p)m−y) ≥ γ.

The value of d can be exactly derived only for the case of m = n and an approximated

value of d can be obtained numerically for the case of m ̸= n. A similar argument is

applied for the lower prediction bound.

The third approximate level γ prediction interval was proposed by Bain and Patel

(1993). This approach considers a conditional distribution for some functions of X and Y

to eliminate the unknown parameter, and then uses the conditional distribution to derive

the predictive limits.

The interval has the form

(TL −X,TU −X), (2)

where

TL =
(2X1v + sw)−

√
s2w2 + 4X1w(n−X1)

2(v2 + w)
,

TU =
(2X2v + sw) +

√
s2w2 + 4X2w(n−X2)

2(v2 + w)
,
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s = n+m, v = n/s, w = z2(1+γ)/2v(1− v)/(s− 1), X1 = X − 1/2 and X2 = X + 1/2.

In addition to these existing prediction intervals, Wang (2008) proposed procedures

to calculate the minimum coverage probability and average coverage probability for a

prediction interval. Based on those procedures, the factor z(1+γ)/2 can be adjusted to

obtain the prediction interval with either a desirable minimum coverage probability or a

desirable average coverage probability.

As mentioned in the introduction section, in this paper we mainly focus on the intervals

with closed forms. The performance of the two existing prediction intervals with closed

forms (1) and (2) in terms of their coverage probabilities are discussed as follows.

Figures 1 and 2 give the coverage probabilities and expected lengths of the Nelson and

the Bain and Patel prediction intervals for different sample size n when m is fixed at 50. It

is seen that the coverage probabilities of these existing intervals are far from the nominal

level when p is near the boundaries. Since the true binomial proportion in real applications

may be close to the boundaries, the behavior near a boundary is important. When p is

not close to the boundaries, the Nelson interval has coverage probability lower than the

nominal level 0.95. In contrast, the Bain and Patel interval has higher coverage probability

than the nominal level 0.95 when p is not near a boundary, but has coverage probability

lower than 0.95 for p near boundaries when the sample size is not large enough. Overall,
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in addition to its poor performance for p near the boundaries, the existing methods cannot

achieve the desirable coverage probability or are too conservative.

Analyzing the Nelson’s interval, the form is derived from the fact that

Y −mp̂√
p̂(1− p̂)m(m+ n)/n

(3)

is approximately N(0, 1) distributed. This is similar to the construction of the Wald

confidence interval for a binomial proportion p, which is

p̂± z(1+γ)/2

√
p̂(1− p̂)/n. (4)

It is well known that the Wald interval does not have good behavior for a binomial distri-

bution when the true proportion is close to a boundary (Wang 2007). This unsatisfactory

property also occurs at the prediction interval construction if we simply employ the Wald

approach. For seeking prediction intervals with better performance when the true pro-

portion is near a boundary, we can use similar approaches, such as the score approach

or the Agresti-Coull approach (Agresti and Coull 1998) for improving the coverage prob-

abilities of confidence intervals (Brown, Cai and DasGupta 2001), to solve the problem.

Agresti and Caffo (2000) and Pires and Amado (2008) also provide some discussions and

comparisons of the confidence intervals for the binomial proportion. In the next sec-

tion, two improved confidence intervals in the literature for the binomial distribution are
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introduced, and improved prediction intervals based on similar approaches are proposed.

3 Improved prediction intervals

In this section, we introduce two alternative confidence intervals for a binomial proportion

and use similar approaches to construct improved prediction intervals for a binomial

random variable.

The two alternative confidence intervals discussed in Agresti and Coull (1998), Brown,

Cai and DasGupta (2002), Wilson (1927) and Wang (2007) are as follows.

1. The Wilson interval. Let X̃ = X + z2(1+γ)/2/2 and ñ = n + z2(1+γ)/2. Let p̃ = X̃/ñ,

q̃ = 1− p̃, p̂ = X/n and q̂ = 1− p̂. The level γ Wilson interval has the form

CIW (X) = p̃±
z(1+γ)/2n

1/2

ñ

(
p̂q̂ +

z2(1+γ)/2

4n

)1/2

.

2. The Agresti-Coull interval. The level γ Agresti-Coull interval is

CIAC(X) = p̃± z(1+γ)/2 (p̃q̃)
1/2 ñ−1/2,

where the notations are as those in the Wilson interval.

The Wilson and Agresti-Coull intervals successfully increase the coverage probability

for p near boundaries, compared with the Wald confidence interval. The Wilson interval

is derived by replacing p̂ by p in the Wald interval, and then solving p from the equation
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p = p̂ ± z(1+γ)/2

√
p(1− p)/n, which is the inversion of the score test. The Agresti-Coull

interval uses the approach of adding two successes and two failures to adjust the Wald

interval.

Remark 1. There are two other confidence intervals, likelihood ratio and Bayesian

credible intervals, discussed in Brown et al. (2002). Since the likelihood ratio intervals

do not have a closed form and the minimum coverage probability of the credible interval

is zero (Wang 2007), we do not consider these two intervals here.

To construct the first proposed prediction interval, we employ an approach similar

to the construction of the Wilson interval. We replace p̂ by (X + Y )/(m + n) in the

denominator of (3) and use the fact that the random variable

Y −mp̂√
(X+Y )
(n+m)

(1− (X+Y )
(n+m)

)m(m+n)
n

(5)

is approximately N(0, 1) distributed. To avoid the poor coverage probability when the

parameter is near the boundaries, we invert

{y : y = mp̂± z(1+γ)/2

√
W (x, y)}, (6)

to derive the prediction limits instead of inverting

{y : y = mp̂± z(1+γ)/2

√
(x+ y)

(n+m)
(1− (x+ y)

(n+m)
)
m(m+ n)

n
}, (7)
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where

W (x, y) =
(x+ z2(1+γ)/2/2 + y)

(n+ z2(1+γ)/2 +m)
(1−

(x+ z2(1+γ)/2/2 + y)

(n+ z2(1+γ)/2 +m)
)
m(m+ n)

n
.

Note that the form of W (x, y) adds z2(1+γ)/2/2 to x and z2(1+γ)/2 to n in the square root

term in (7). This modification can prevent the interval (6) from shrinking to the empty

set when x = y = 0.

The two solutions of y in (6) are the proposed lower prediction limit Ls(X) and the

upper prediction limit Us(X), which are

(Ls(X), Us(X)) =
A

C
± B

C
, (8)

where

A = mn[2xz2(1+γ)/2(n+ z2(1+γ)/2 +m) + (2x+ z2(1+γ)/2)(m+ n)2]

B = (mn(m+ n)z2(1+γ)/2(m+ n+ z2(1+γ)/2)
2(2(n− x)[n2(2x+ z2(1+γ)/2) + 4mnx+ 2m2x]

+nz2(1+γ)/2[n(2x+ z2(1+γ)/2) + 3mn+m2]))1/2

and

C = 2n[(n+ z2(1+γ)/2)(m
2 + n(n+ z2(1+γ)/2)) +mn(2n+ 3z2(1+γ)/2)].

Since this is an approach similar to constructing the score confidence interval, we call

this interval the score prediction interval.
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In addition to the above approach, to avoid the poor performance of p near boundaries,

we can adjust the usual prediction interval (1) by replacing p̂ with p̃, which leads to the

second proposed interval (La(X), Ua(X)):

Ŷ ± z(1+γ)/2(mp̃(1− p̃)(m+ n)/n)1/2. (9)

Note that here we do not consider replacing p̂ in Ŷ by p̃ because the expectation Ep(Y −

mp̃) is not zero. If we replace p̂ in Ŷ by p̃, the Kullback -Leibler distance discussed in

Section 4 diverges as the sample size increases. This interval basically uses a method

similar to the Agresti and Coull confidence interval, where p̃ is used as an estimator of p

instead of p̂ to overcome the problem of the poor behavior of the Wald interval. We call

the second proposed interval the adjusted prediction interval.

The performance of the score and adjusted prediction intervals in terms of coverage

probability and expected length are presented in Figures 3 and 4. The coverage probabil-

ities of the proposed intervals are decreasing in p when the proportion is near 0 and are

increasing in p when the proportion is near 1. The coverage probabilities are close to the

nominal level for p in an interval with a center at p = 0.5. The proposed intervals have

the advantage of higher coverage probability when p is near the boundaries in which the

performance of the coverage probabilities of the existing intervals are unsatisfactory. In

addition, the score interval has shorter expected length than the other intervals.
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Remark 2. The coverage probabilities presented in Figures 1-4 are the exact coverage

probabilities calculated by the definition. Since the performance of the coverage proba-

bilities are significantly different for different intervals when p goes to the boundaries, to

clarify the presentation, we use different scales for the y-axis in these figures.

Remark 3. Since the value of Y is from 0 tom, suitable modifications for the intervals

(8) and (9) are [max(0, Ls(X)),min(Us(X),m)] and [max(0, La(X)),min(Ua(X),m)], re-

spectively. However, since the existing intervals do not use a modified form, for a fair

comparison, we still use the original form of the proposed interval for investigation in this

study.

4 Predictive distribution

The new prediction intervals can be evaluated by the criterion of the predictive distri-

bution estimation. The true distribution of Y is the binomial distribution. Since the

two proposed intervals are constructed using the normal approximation, the degree of ap-

proximation can be measured by comparing these normal approximations with the true

binomial distribution.

There is a large literature on predictive distribution estimator studies, for example,

Aitchison (1995), Murray (1997), Ng (1980), Lejeune and Faulkenberry (1982), Harris
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(1989) and Lawless and Fredette (2005). One method of constructing a predictive dis-

tribution from a predictive limit is treating α prediction limits as the α quantiles in the

predictive distribution function.

Let F (y|x; p) = P (Y ≤ y|X = x; p) denote the true distribution of Y based on X and

p, and let f(y|x; p) be the corresponding probability mass function. Note that the true

probability mass function is

f(y|x; p) =
(
m

y

)
py(1− p)m−y. (10)

Based on (6) and (9), let fs(y|x) and fa(y|x) denote the predictive densities derived by

the score and adjusted predictive limits using the plug-in estimators of p, which indicates

that fs(y|x) and fa(y|x) are density functions of the normal distributions N(mp̂,W (x, y))

and N(mp̂, p̃(1− p̃)m(m+ n)/n).

An approach to evaluate the predictive distribution is to consider such distribution as

an estimator of F (y|x; p) and to measure the goodness of the estimator in terms of the

criteria of the average Kullback-Leibler distance of f̃(y|x; p) from f(y|x; p),

EX(
m∑
y=0

f(y|x; p)log{f(y|x; p)
f̃(y|x; p)

}), (11)

where f̃(y|x; p) is a predictive density estimator. See, for example, Lawless and Fredette

(2005).
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The Kullback-Leibler distances of fs(y|x) and fa(y|x) from (10) are

EX(
m∑
y=0

f(y|x; p)log{f(y|x; p)
fs(y|x)

}) (12)

and

EX(
m∑
y=0

f(y|x; p)log{f(y|x; p)
fa(y|x)

}). (13)

Comparisons of the Kullback-Leibler distances for different sample sizes are shown in

Figure 5. It can be seen that the predictive distribution derived from the score intervals

can approximate the true binomial distribution more accurately than that derived from

the adjusted interval.

Theorem 1 shows that the variance of the distribution with respect to the density

function fs(y|x) is closer to the true variance than that of the distribution with respect

to fa(y|x). This can provide an intuitive explanation for the results in Figure 5.

Theorem 1 The absolute difference between the expectation of the variance estimator

W (X, Y ) and the true variance mp(1−p) is less than that of the variance p̃(1− p̃)m(m+

n)/n. That is,

|E(W (X, Y ))−mp(1− p)| < |E(p̃(1− p̃)m(m+ n)/n)−mp(1− p)|. (14)
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The proof of Theorem 1 can be obtained by straightforward calculations.

Note here that we do not list the Kullback-Leibler distance of the predictive distribu-

tion derived from the Nelson interval because its Kullback-Leibler distance is divergent.

Since the predictive density function derived from it is

1√
2πp̂(1− p̂)m(m+ n)/n

e
−(Y −mp̂)2√

p̂(1−p̂)m(m+n)/n , (15)

when x = 0, the denominator of (15) is equal to zero. Thus, it leads to an infinite Kullback-

Leibler distance. From the Kullback-Leibler distance criterion, the proposed intervals with

finite Kullback-Leibler distances are better than the Nelson interval. In addition, since the

derivation of Bain and Patel interval is not directly based on the normal approximation

for the future observation Y , we cannot directly obtain its predictive distribution.

5 Applications

In this paper, we take the example of a hearing screening program for all births with

transient evoked otoacoustic emissions in all 8 maternity hospitals in the state of Rhode

Island over a 4-year period during 1993-1996 as an application of the binomial prediction

interval. The goal of this hearing screening program is to ensure that all infants and

toddlers with hearing loss are identified as early as possible and provided with timely and

appropriate audiological, educational, and medical intervention. This example contains
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hearing screening data collected prospectively for 47991 normal nursery liveborns born in

Rhode Island between January 1, 1993 and December 31, 1996 (Vohr, et al. 1998). The

prediction interval can be used to predict the number of children with hearing loss for

future years. Since the time period considered here is not large, we can assume that the

number of children with hearing loss follows the same binomial distribution in each year.

Table 1 lists the numbers of all births and infants with permanent hearing loss, re-

spectively for each year during 1993-1996.

Table 1. Screening demographics between 1993 and 1996

Year 1993 1994 1995 1996 Total

Normal nursery liveborns 9885 13176 12694 12236 47991

Identified with

permanent hearing loss 11 12 20 18 61

To compare the performance of the prediction intervals, we use the observations of

the two years 1993 and 1994 for the normal nursery liveborns to predict the number of

the infants with hearing loss for the future two years 1995 and 1996. The total number

of the normal nursery liveborns for 1993 and 1994 is 23061, and the total number of

the infants with hearing loss for these two years is 23. Assume that the number of the

infants with hearing loss follows a binomial distribution. The level 0.9 Nelson interval,

Bain and Patel interval, score interval and adjusted interval, based on the first two year
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observations for the number of the infants with hearing loss for the future two years 1995

and 1996 are (13.07, 36.66), (13.52, 39.36), (14.27, 38.36) and (12.73, 37.00), respectively,

where z(1+γ)/2 = 1.64 in these prediction intervals. However, according to the data, the

true total number of the infants with hearing loss of the future two years 1995 and 1996

was 38, which does not belong to the Nelson interval or the adjusted interval, but it can

fall into the Bain and Patel interval and the score interval.

Predicting the number of the infants with hearing loss for the year 1995 based on the

data from 1993 and 1994, the 0.9 level Nelson prediction interval, Bain and Patel interval,

score prediction interval and adjusted prediction interval are (5.4, 19.92), (5.4, 21.55), (5.96, 20.83)

and (5.19, 20.13). The Bain and Patel, score and adjusted intervals cover the true number

20, but the Nelson interval does not cover the true number 20.

It reveals that the performance of the score predictive interval is better than the

Nelson interval in this example. A comparison of the score and adjusted prediction

intervals reveals that the theoretical comparison of Kullback-Leibler distances for the two

predictive distributions is consistent with the comparison from this application example.
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6 Conclusion

This paper proposes two improved prediction intervals with closed forms predicting

disease count, the score prediction interval and the adjusted prediction interval. Both of

them can increase the coverage probability when p is close to the boundaries compared

with the existing prediction intervals. A simulation study shows the score interval has

the shortest expected length of these intervals. The two new intervals are also evaluated

in terms of the Kullback-Leibler distance criterion through the predictive distributions.

Comparing the distances of the predictive distributions from the binomial distribution

shows the predictive distribution corresponding to the score interval can approximate the

binomial distribution better than that corresponding to the adjusted prediction interval.

In addition, to obtain more accurate results, we can employ the procedure of Wang

(2008) to derive an appropriate value of z(1+γ)/2 such that the prediction intervals can

achieve either the desirable minimum coverage probability or the desirable average cov-

erage probability.
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Figure 1: Coverage probabilities and expected lengths of the 95% level Nelson prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 2: Coverage probabilities and expected lengths of the 95% level Bain and Patel prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 3: Coverage probabilities and expected lengths of the 95% level score prediction intervals

for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and n = 1000(solid

line).
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Figure 4: Coverage probabilities and expected lengths of the 95% level adjusted prediction

intervals for the Binomial distributions with n = 10(dotted line), n = 50(dashed line) and

n = 1000(solid line).
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Figure 5: Kullback-Leibler distances of the score (solid line) and adjusted predictive distribu-

tions (dashed line) from the true binomial distribution when the sample sizes are (1) n = m = 10,

(2) n = 50,m = 10 and (3) n = m = 50
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