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Pricing perpetual American compound options under a
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Abstract

A compound option gives the holder the right to buy or sell the underlying option. In this paper,
we consider the pricing problem of perpetual American compound options when the underlying
dynamics follow a jump-diffusion process. Following Gapeev and Rodosthenous, the initial
two-step optimal stopping problems are decomposed into sequences of one-step problems for
the underlying jump-diffusion process. Using the averaging approach for the usual one-step
optimal stopping problems, we give explicit solutions to the perpetual American option pricing

problems in the double-exponential jump-diffusion model.

1 Introduction
The one-step optimal stopping problems we consider in this paper will be of the form

Viz) = flelg]Er(e*”g(Xf)) (1.1)

where X = {X; : t > 0} under P, is a Lévy process started from X, = z. Further, g is a
measurable function, » > 0 and 7 is a family of stopping times with respect to the natural
filtration generated by X, F = {F; : t > 0}. The optimal stopping problem consists of finding the
optimal stopping time 7* such that V(z) = sup, ¢y E.(e 7" g(X,)) = E. (e g(X,+)). Also we
need to find the corresponding optimal reward (the value function): V(z) = E,(e™"" g(X,+)).

In the literature, there are many different approaches for solving the problem (1.1). In
particular, Surya [16] proposed an averaging approach for solving the optimal stopping problem
(1.1) in a general setting. His approach does not appeal to a free boundary problem associated
to the optimal stopping problem. Instead he first introduced an averaging problem for a given
reward function g. Then he showed that an explicit optimal solution can be founded if there is a

solution to the averaging problem that has certain monotonicity properties. Recently, when the



process X is a jump-diffusion process of the form in (2.8), Sheu and Tsai [15] presented explicit
solutions to the averaging problems for a class of the American call type reward functions and
hence solved the corresponding optimal stopping problem (1.1).

A compound option is a standard option with another standard option being the underlying
asset. There are four basic types of compound options: a call on a call, a put on a call, a
call on a put, and a put on a put. Consider, for example, a call on a put of European type.
On the first exercise date T, the holder of the compound option is entitled to pay the first
strike price, K7, and receive a put option. The put option gives the holder the right to sell the
underlying asset for the second strike price, Lo, on the second exercise date, T5. The compound
option will be exercised on the first exercise date only the value of the option on that date is
greater than the first strike price. In the Black-Scholes framework, European-style compound
options can be valued analytically in terms of integrals of the bivariate normal distribution(see,
for example, Geske [7]). For more general underlying dynamics, either explicit solutions do not
exist or the integrals become difficult to evaluate. On the other hand, in the literature, many
researchers considered the compound options of American type. In Chiarella and Kang [5], the
authors formulated the pricing problem for American compound options as the solution to a
two-step free boundary problem which is solved numerically via a sparse grid approach. In [6],
Gapeev and Rodosthenous considered the pricing problem of perpetual American compound
options when the underlying dynamics follow the geometric Brownian motion. By solving the
associated sequence of one-sided free boundary problems and the martingale verification, they
obtained explicit pricing formulas for all four types of perpetual American compound options.
In this paper, we consider the pricing problem of perpetual American compound options when
the underlying dynamics follow a jump-diffusion process. Following Gapeev and Rodosthenous
[6], the initial two-step optimal stopping problems are decomposed into sequences of one-step
problems for the underlying jump-diffusion process. In the double-exponential jump-diffusion
model, using the results obtained in Surya [16] and Sheu and Tsai [15], we give explicit solutions
for the associated optimal stopping problems and, hence obtain the explicit pricing formula for
the perpetual American option pricing problems. By our approach, we also recover results

obtained in Gapeev and Rodosthenous [6].

2 Preliminaries

Let X = {X; : t > 0} be a real-valued Lévy process defined on a filtered probability space
(Q, F,{F:},P) such that Xy = 0 a.s. A Lévy process starts from Xy = x is simply defined as
x + X, for t > 0 and we denote its law by P,. Denote by E, the expectation with respect to
the probability measure P, . For convenience we shall write P for Py and E for . The Levy-

Khinchine formula states that E(e'%Xt) = et where 1 is called the characteristic exponent



of X and is given by the formula
1 .
Y(u) = iau — §I)Qu2 + /R(e”” — 1 —iuxlyz<y)H(dz). (2.1)

Here a € R, b > 0 and II is a measure on R\{0} such that [, 1 A 2?II(dz) < occ.
Throughout this paper, we denote by e, an exponential random variable with parameter

r > 0, independent of the process X. In addition, we denote by

M,= sup X; and I[.= inf X,

0<s<e, 0<s<e,

the supremum and the infimum of the Lévy process X killed at the independent exponential

random time e,.. Recall the following well-known Wiener-Hopf factorization formula,

r

o)
where 4 (u) = E(c"M) and 7 (u) = E("").

EeiuXe,r —

= o (), (u) (2.2)

Theorem 2.1 Given a reward function g with H = {g > 0} = (a, 00) for some @ < co. Suppose

that @g is a continuous function on H that satisfies the following averaging property

E(ég<a: ; Mn) — () (2.3)

for every x > a. We assume further that there exists T € H such that ég(i‘\) =0, ég(a:) is
non-decreasing for x > T and @g(x) <0 fora < x <. Then the value function to the optimal
stopping problem (1.1) is given by the formula V(x) = Ey(e™"™ g(X,+)). Here x* is the largest
root of @g(sc) =0 in (a,00) and 7% = inf{t > 0: Xy > a*}. Moreover, we have for every x € R,

Vi(z) = E(ég(x + MT)l{HMTM*}).

Example 2.2 (Perpetual American call option). Consider the function g(z) = 32N hyefme.

m=1

Simple algebra shows that the function
N M -1
Qufa) = 3 e (=10, (2.4
m=1
satisfies the averaging property (2.3) for all x. (Here we assume that E(e?»Mr) < oo, 1 <
—1
m < M.) In particular, if g(z) = e* — K, then @g(x) = e” (1/1;*(—1)) — K. Denote by
* the unique value such that e*c = ¢t (—i)K. Then we have V(z) = B, (e g(X+)) =
E(@g(m + Mr)l{w+M7,>$:}) , where 7* = 1inf{t > 0: X; > x%}.

x*

Theorem 2.3 Given a reward function g with H = {g > 0} = (—o00,a) for some a > —o0.

Suppose that ﬁg is a continuous function on H that satisfies the following averaging property

E(ﬁg(x + Ir)) = g(x) (2.5)



for every x < G. We assume further that there exists T € H such that Py(Z) = 0, Py(x)
is mon-increasing for x < T and ISg(a:) < 0 for T < x < a. Then the value function to the
optimal stopping problem (1.1) is given by the formula V(z) = E,(e™ " g(X,+)), where z* is
the smallest root of ﬁg(:p) =0 in (—o0,a) and 7 = inf{t > 0: X; < x*}. Moreover, we have

for every x e R, V(z) = E(]Bg(x + Ir)l{x+lr<w*}>

Proof. We first write g(z) = g(—z) and H := {§ > 0} = (—a,00). Set Q4(x) = P,(—x) for
x > —a and ]\/4\7, i= SUPp<i<., —Xt. Observe that @g is a continuous function on H that satisfies
the averaging property (2.3) for ]\//.TT and g on H. Also, by assumption, there exists —% € H
such that @g(—ﬁf) =0, @g(x) is nondecreasing for x > —7 and @g(m) <0for —a <z < —Z. Set
Y; = —X,. By Theorem 2.1, we observe W (y) := sup, E,[e7"7g(Y;)] = E,[e"" g(Y;-)], where
™ =inf{t > 0: —-X; > —2*} and —z* is the largest root of éa(m) =0 in (—a, 00). Also, note
that V(x) = sup, Ez[e™""¢(X,)] = sup, Ele """ g(x+ X, )] = sup, E[e ""g(—2—X,)] = W(—x)
Therefore, if we set y = —z and y* = —z* then we have

—~

V(o) = () =B, [ 300)| = B[ g0+ Yeo)| = B[ gl - ¥2o)

=K {e_”*g(:v + XT*)} =E, {e‘”*g(XT*)]

and
V) = W) <2|Qalo+ Ty 1| =B Pao = FE1 L, 7.y

=E [ﬁg(—y + Ir)l{—y+1,,,<—y*}} =E F’a(m + fr)l{a:+1r<w*}] )
as required. The proof is complete.

Remark 2.4 Given a reward function g with {g > 0} = (—o0,a). Set g(y) = g(—y) and

M, = supy<;<.. —Xi and assume that @g satisfies the averaging property (2.3) for ]\/IT and
glie., gly) = E[@g(erM\r)] forally > —a). Write ]Sg(x) = @g(fz) for x < a. Then we have

g(z) =G(—z) =E {@g(_gg + J\Z)] {Qg( x— )} =E [ﬁg(x + m] ,x < . (2.6)
Therefore, f’g(m) satisfies the averaging property (2.5) for I. and g on x < a.

Example 2.5 (Perpetual American put option). Consider the function g(x) = Z%Zl hnefm®.
Then the function

Zh e””( —if) ))1 (2.7)

m=1

satisfies the averaging property (2.5). (Here we assume that E(e?=r) < 0o, 1 <m < M.) In
—1
particular, if g(x) = K — e®, then P,(z) = K —&* (¢f(—i)> . Denote by 3 the unique value

such that €*» = ;" (=i) K. Then we have V(z) = E,(e™" g(X,+)) = E(ﬁg(x+l,«)1{x+1,rv<w;}> ,
where 7° = inf{t > 0: X; <y}



From now on, we consider the jump-diffusion process X of the form

N/\
Xi=Xo+at + bW, + Y Y, — sz, t>0. (2.8)

n=1
Here, a € R\{0} , b > 0, W = (W;,t > 0) is a standard Brownian motion, N* = (N}*;t > 0)
and N# = (N/';t > 0) are Poisson processes with rate A > 0 and p > 0, respectively. Also,
Y = (Y,,n € N) and Z = (Zj, k € N) are sequences of independent random variables with the

identical matrix-exponential distribution given by

vl Nk

c ,3 .
dF M (z) = py(2) dx—l{r>0}zz izl 51 Bre oy
k=1j=1 J
and
Oy —1
dF(_)(J?) ( da:— 1{Z>O}Z Z Cmeé il e_apxdl‘,
p=1m=1

respectively. Here, the parameters cj, Bk, Cpm, and «, can in principle take complex values,
but if we order ay, and 3;, by their real parts then o; and 8; must be real, while the others may
be complex with 0 < 81 < Re(f2) < -+ < Re(fy,) and 0 < a3 < Re(az) < -+ < Re ().
The random variable W, N*, N# Y and Z are assumed to be independent. Note that the
characteristic exponent of X is given by

Lp

RLIL iBe \J —iqy, \™
——)\EE ( ) -1 SN () 1] (2
¥(z) = iaz + { Ckj Z 1+ i6y ]+“[ % z — iay (29)
k=1j=1 p=1m=1
Denote by —ip1,- - -, —ipu,, —ip1,- - -, —ipy, the roots of r — ¢ (z) = 0 with Re (p,,) < --- <

Re(p1) < 0 < Re(p1) < Re(p2) < -+ < Re(py,). Note that —ip; and —ip; are purely
imaginary. Moreover, if v; > 1, then 0 < p; < 1 and if vo > 1, then 0 < —p; < ;. We
assume further that all roots are simple. We observe that the distribution of I,. has the form

H2
fr, W) dy = 1{a>0p=0ydodo(dy) + 1{u,>13 [Z dppne” "Y1y <oy dy (2.10)
n=1

where do = [12,(=p) ITZ La; % and

i —_T7 (Pt Y P 1< i< 11
=] (=—— 11 S rlsi<m. (2.11)

o _
k=1 k m=1,m#j Pi +

Also the distribution of M, is given by the formula

M1
Iu, (¥)dy = 1ia<o,p=01dodo(dy) + 1{u,>13 [Zdjpje_pjyl{y>o}dy (2.12)
=1
where do = [T/2, p; [1i2, Be " and
V1 /B o nj M1 )
deH(%,pk) [T % for1<k<um. (2.13)
j=1 J i=1,i#k Pi = Pk



Definition 2.6 We write g € mg if the function g : R — R is continuously differentiable and
for vy > 1, there exist Ay > 0,Ay > 0 and 6 € (0,31) such that |g(x)| < A} + Aze%® Vo > 0.
We write g € m if the function g : R — R is continuously differentiable and for va > 1, there
exist A1 > 0,A3 >0 and § € (0, —a) such that |g(x)| < A + Aze™%% Vo <0.

For any g € m, we define the function Q4 (z) by the formula

Qg(x) = 1{#2>1}Z npn{zzz m_ Cki )'eﬁkl/x (y_x)j—ég(y)e—ﬁkydy

k=1j=1/4=1

(a5 <x>+b;g<>)}

v Mg

—A B c z > j— —Bru
+1l{a>06=0}— {ZZ j_kl k3 B / (u—z)’ 1g(u)e Bt gy,

k=1 j=1

+(AN+p+1r)g(x) —ag’(x)}. (2.14)

On the other hand, if g € 7, the function P, is define by the formula
_ = —p(ap) " Cpm
P =3 3 3, o) T

r M1 0
d‘ j — «
X (1{u121} Z % + 1{a<0,b:0}1{k:1}d0) /_ (=)™ Fg(t + x)erdt

H1

b2 ado ’
+ 1{u121}§ Zdjﬂj —1{a<o,b:0}7 g'(z)

2 do
N 1{m>1}2 983 (0 4 22) 11 gy 2 <A+u+r>] (@). (2.15)

Remark 2.7 (a) Given two reward functions g and g. If g = g on [x,00), then Qq(x) = Qg(x).
If g =g on (—o0,x], then Py(x) = Pg(x). (b) Consider the function g(x) = Zf\f:l hyefm® . If

—1
O < B1 for all m, then we have Qg(z) = ZM_ By efm® <¢f(—i0m)) . On the other hand,

m=1
—1
if —0m < i for all m, then we have Py(x) = Z%zl Ry €0 (w;(—iQm)> .

Proposition 2.8 Given a reward function g. If g € mo, then the function Q4(x) given in (2.14)
satisfies the averaging property (2.3) for all x. On the other hand, if g € w1, then the function
P,(z) given in (2.15) satisfies the averaging property (2.5) for all x.

Proof. The first statement was proved in Sheu and Tsai [15]. The second statement follows
by using the fact that P,(—z) = Q(z) where Qg is given in (2.14) for g(x) = g(—x) and the

process —X;.



3 American compound option

In this section, we consider the pricing problem of the perpetual American compound options.
The perpetual American compound option have two strikes prices. For example, the call-on-call
option gives its holder the right to buy at an random time 7 for the strike price K a call option
with the strike price K5 and the exercise time (, where ( > 7. The compound option will be
exercised on the first random time 7 only the value of the option on that date is greater than
the first strike price. The rational prices of perpetual American options can be formulated by

the values of the optimal stopping problems

(call-on-call) Vi(z) = stip E, _e‘”Hfr (XT)_ . (3.16)
(call-on-put) Va(z) = sup E, :e_”H;(XT): . (3.17)
(put-on-call) Vs(z) = stip E, :e”H;r (XT): . (3.18)
(put-on-put) Va(z) = Slip E, :e_TTHI(XT): . (3.19)

Here the reward functions H;(z), j =1, ...,4, are given by

Hl(m) = W(.’)S) — Kl, Hg(x) = U(LE) - .Kvl7 Hg(fL‘) = L1 — W(!E)7 H4(1‘) = L1 — U(.’)S)
(3.20)
for all z € R. Also, W(z) and U(z) denote the rational prices of the perpetual American call

and put options with the strike prices Ko and Lo, respectively and are given by
W(z) =supE, |e " (e*" — K3)" | and U(z) = supE, |e”"(Ly — e*7)* (3.21)
n n

where the suprema are taken over the stopping times 1 of the process X.

From now on, we assume that {X;};>0 is the form in (2.8) with ny, =1, ¢, = 1, ¢j1 > 0,
Bk >0,¢1 >0and ap >0, for 1 <k < v and 1 < p < vy. For simplicity, we assume that
b # 0. In this case, 1 = v1 + 1, o = v2 + 1 and all roots are are simple and purely imaginary.

Also they satisfy the conditions

0<p1<ﬂ1<p2<~~~<ﬂ#1_1<pm (322)
and

0<—p1 <o < —pa <<yt < —Ppy- (3.23)

25}

We assume further that p; > 1 and —p1 > 1. Recall that far, (y) = >_02, djpje”?71(,~0y and

fIT(y) = 2?:1 Jnﬁneiﬁ"yl{y<0}a where

v1 1231
dk:HﬂJ Pk Pi yfor 1 <k <py. (3.24)
j=1 Bi i=1,ik PP T Pk




and

V2 o~ 2 ~
dU:_HM H %, fOI‘lS?’]S[IQ (325)
m=1,m#n _pn + Pm
From these, we observe ¢, (u) = Y41, le_f;; and ¢ (u) = =372, uj_f; Also if H is in 7,
we have
v M2
Z npﬂnAkakl 5ch/ H(y)e Pdy
k=1n=1 k
H2 7~ 2~ H2 7 o~ 39717/
dypr b"py dypnb"H'(x)
— —_ —)H(x) — _. 3.26
> “nias ) - 3y (3.26)

If H is in w1, we have

v2 M1

- Jpjwpcpl/ H(t + z)e®r'dt
p=1j=1 04+p3
2 H1 2 17/
Z dipj . b°p; S d;jp;b"H'(x)
— —\H = .2
" j=1 r (a * 2 ) (x) * j=1 2r (3 7)

—1
Set g1(x) = €® — K. Then Q, (z) = €” <¢j(—i)> — K. Denote by z¥ the unique value
such that e®c = i (—i)Ky. Then the function W (z) in (3.21) is given by the formula

d; Kzepg(da x7)

W(x) = Liazary(€” — Ka) + Lizcary Z —
]

j=1

(3.28)

By (3.22) and (3.24), we obtain that d > 0 for all k. Hence, W (x) is a strictly increasing
function with lim, , . W(z) = 0 and linllggﬁoo W(z) = co. On the other hand, set go(z) =
Ly — €”. Then Py, (z) = Ly — <1/1,,(—i)) e®. Denote by x}, the unique value such that e =
1, (—1)La. The value function U(z) in (3.21)is given by the formula

U( ) = 1{x<z*}(L2 —e ) + 1{x>m*} Z B SS— (329)

y (3.23) and (3.25), glvn < 0 for all n and so U(z) is a strictly decreasing function with
lim, o U(z) = Ly and lim,_,o, W(z) = 0.
(Call-on-Call Option ). We consider the call-on-call option. The reward function Hj(x)
is given by

H1 dezepj(fr*rZ)
J

- K1> . (3.30)
j=1
Clearly, Hy(x) is a strictly increasing function with lim,_, o Hi(z) = —K; and lim, o Hi(z) =

oo. Hence there exists a unique a; > —oo such that {H; > 0} = (a1,00). Note that H; € mg

-1
and Qg, (z) = €* (¢j(—i)> — Ky — Ky for x > 2. Furthermore, if there exists =7 such



that Qp, (23) = 0,Qp, (z) <0 for a3 < z < x} and Qp, (x) is non-decreasing on (z7,00) then
by Theorem 2.1, we deduce that Vi(z) = E, (e~ Hy(X,;)) = f;fﬁx Qm, (x + m) far, (m)dm,
where 77 = inf{t > 0: X; > z7}.

(Call-on-Put Option). We consider the call-on-put option. Then we have

H2 7Cflan2€Pn(m xp)
HQ(,I,’) = U($) - K1 = l{ajng}(LQ — Kl — em) =+ 1{1>I;} <Z T — Kl) . (331)
n=1 K
Clearly, Hs(x) is a strictly decreasing function with lim,_, o, Ho(z) = Lo—K; and lim, o, Ho(z) =

—K;. Hence {Hy > 0} = (—o00,az) for some a2 < oo(for this compound option, we always
-1

assume that Ly > K;). Notice that Hy € m and Ppy,(z) = Ly — Ky — e (¢ (—1)
for all z < z;. Furthermore, if there exists x3 such that Pp,(z3) = 0, Py,(z) < 0 for
x5 < x < ag and Pg,(z) is non-increasing on (—oo,x3) then by Theorem 2.3, we conclude
that Va(z) = Ew(e_TTgHg(XTZ*)) = ffio_m Py, (x+vy) fr,.(y)dy, where 75 = inf{t > 0: X; < x5}.

(Put-on-Call Option). We consider the put-on-call option. The payoff function is given
by

f: dezepj(rfrZ)

Hg(x) =1L - W(I) = I{IZIZ}(Ll + Koy — Bm) + 1{93<IZ} <L1 - b1
J

). (3.32)
j=1

Clearly, Hs(z) is a strictly decreasing function with lim,_, _« H3(z) = L1 and lim,_,o, H3(x) =
—o0. Hence {H3 > 0} = (—o0,a3) for some a3 < oco. Notice that Hs € 7 and Py, (z) =

|55 d-Kzer(m*mD _ .
Ly=3050 === ¢ (i) forallz <z

*. Furthermore, if there exists 3 such that
P, (2%) = 0, Py, (z) < 0 for 23 < 2 < a3 and Py, (x) is non-increasing on (—oo, z%) then by
Theorem 2.3, we conclude that Vz(z) = E, (e~ H3(X5;)) = fff)o * P, (z+y)f1,(y)dy, where
=inf{t > 0: X; < x3}.

(Put-on-Put Option). We consider the put-on-put compound option. Then we have

H2 7[{ LQGﬁ"(z_m;)
Hy(x) = L1 = U(2) = Lg<azy (€ + L1 — L) 4+ 1{z>02} <L1 - Z 771_/7) (3.33)
n=1 K
Clearly, Hy(x) is a strictly increasing function with lim,_, o Hs4(x) = L1—Lg and lim,_, o, Hy(z) =

L. Hence {H, > 0} = (a4, 00) for some a4 > —oo(for this option, we assume that L, < Ls).
—1

Note that H d =Ly, 2Rl L5 foralle > 4. F

ote that Hy € mo and Qp, (z) = L1 —>_,%, — A P (—ipy) or all z > x;. Fur-
thermore, if there exists z} such that Qu,(23) = 0,Qp,(v) <0 for ay <z < zj, and Qp, () is
non-decreasing on (2, 00) then by Theorem 2.1, we deduce that Vy(z) = E (e~ Hy(X.:)) =

fz _, Qu,(x +m)far, (m)dm, where 7 = inf{t > 0: X, > x}}.

4  Verification of optimality

Recall that the jump-diffusion process X is of the form in (2.8). To prove the optimality, we
assume further that {Yf ri=1,2,..} and {Z} : j = 1,2,...} are sequences of independent



exponentially distributed random variables with parameters 8 and «, respectively. First, recall
that g1(x) = e* — Ko and W(z) = 1{I2$2}(ez —Ko)+ 1{w<$:}(%ep1(x7mi) + %em(gﬁ’mi)),
where z* is the unique value satisfying e®e = ¢ (—i)K,. In addition, go(z) = Lo — €® and

T LaePn @75
U(z) = Liz<az) (L2 =€) +1(z501) 2727:1 M7 where z7 is the unique value satisfying

1—py
e’r = ’Lpr_(—l)LQ

(Call-on-Call Option). Note that H(z) = W(z)—K1 = L5y (€= K1—Ka)+1(p<qr) <Zif_(i ePr(@—ag) 4

2K ppa(z—ag) _ Kl) and
p2—1

C(dipy A8 e AB N g [ i
Q) =( B2 2 R 2 e [ ey

_ Vlﬁl o+ EPy E’f"’ a+t %)}Hl(x) _ {b

2

. ) ) Q*T(dlﬁl + d2ﬁ2)}H1(I)-

(4.34)

We show that the rational price of the call-on-call option is the rational price of the perpetual
American call option with the strike price K1 4+ Ky. That is Vi(z) = E,(e”"™ H; (Xr)) =
Liz>ery(e® — K1 — Ka) + 1{w<zf}(%epl(z_“” + %e"?(z_ﬁ)). Here z7 is the
unique solution of (¢, (—i))™! — K1 — K5 = 0 and 77 = inf{t > 0 : X; > z}}. (Note that
Case 1: ¢% — K; — K5 < 0. Our result follows from the fact that Hf(x) = (e — K1 — Ky)™.
Case 2: e% — K; — K5 > 0. In this case we have {H; > 0} = (a;,00) for some a; < x. For

a; <z <z}, we have

o B . 4K A K YE(DEK, K )
bz BY gy —efE—2) 172 22 : 2 -2
e Hi(y)e PYdy =e c ( + + -
/m 1) Y (b1 =1)(p1 = B)  (p2—1)(p2 —B) -1 B
diKpet ("7 dyKe ) K

(pr—=D(pr—B) (p2—D(p2—B) B~
Plugging this into (4.34) gives

dipn M3 dopr AP )
1 = . — _|_ . —
Qum (7) ( r B=m T B—p2
(pr =1 =B)  (p2—1)(p2—B) p—1 B
dy KqePr(@=xc) do KoeP2(@=1c) B Kl}

(p~1 = (p1 = B) (pi— D(p2—B) B
B [d1ﬁ1 Na+ b2/71) n daps (a+ b2, )} (( QK2 i (omar) N do Ko eraa=a1))y _ K1)

r 2 T 2 p1—1 p2—1
b2 ~ o ~ o d1p1K2 * dgpng *
N d APLR2 opi(e—wy) 4 22702 po(z—xl) | 4.35
[QT( 1p1+ 2Pz)](p1_1€ +p2—16 (4.35)

10



Notice that

41 Ko . do Ko V(DK Ks
(pr =1 = B)  (p2—1)(p2—B) B—1 B
- di1 K> do K> K, dip1 dap2 _ &
RV [P R s T ppy; BV p sy S D
Ky d1p1 dap2 '\
‘MBU<mﬂ*7mﬁ>_0 (4:36)

Also, using the Wiener-Hofp factorization formula, we have that

r r(8—2)(a+2)

r—(—iz) [b“

~ pmp(B-2) <~ dipn
B 2z (1.37)

Evaluating both sides of (4.37) at z = (3 gives

2

i, _ —B)(p2 — B)
Z B —Dr —Aplpz ' (4.38)

Also, by multiplying both sides of (4.37) by 22 and letting z — oo, we see that

2 _ 3
S = (4.39)
k=1 5 P1P2

Moreover, it follows from (a) and (c) in Lemma 3.1 of [15] that

dipy b’ m dapa b%po 1 ( Aipy Adapo >
a+ TR A S (S U 4.40
r ( 2 ) ( 2 ) r B—p1 B—p2 (4.40)
Taking account (4.35)-(4.40) we have that for a; < x <z},
w d1 K — — _
Qu, (z) —em (@—=0) DKz [_ Blpa=B) | _ B=p)B=p2) _ 5]
p1—1 p1p2 p1P2 P2
4 epala—sz) 2K {_ Bp1 — B) Tl (B—=p1)(B—p2) B} K
p2—1 p1p2 p1P2 P1

. (4.41)

For z > z7, we have Hi(z) = e” — K1 — K> and, hence, Qu,(z) = Q, (v), where Hy(z) =
e® — K1 — K. By (24), Qg, (z) = e* (7 (—i))™! — K3 — K;. Denote by a7 the unique solution
of e®(1,F (—i)) ! — K1 — K3 = 0. Clearly, we have a7 > 2%, Qpu, (z}) = Qpg, (1) =0, Qu, (z) =

Qg (z) < 0 on (z7,27) and Qu,(z) = Qg (z) is increasing on (z3,00). By Theorem 2.1,

Vi(e) = Eo(e " Hi(Xrp)) = X, Quy(z +m) far, (m)dm = [T Qg (z+m) far, (m)dm =
Liz>ery(e® — K1 — Ka) + 1{z<$f}(%em(z *1) 4 Mem(”ﬁ 1)), This completes the
proof. [

(Call-on-Put option). Note that Hz(z) = U(z)—K1 = l{z<usy (Lo—K1—€")+1{z5 00} ( Zf’

11

= (B—2)(a+2)+az(B—2)(a+z2)+ Xe(a+2) —pz(B—2)| +r(B—2)(a+2)

_d L2eﬂ71(f z7)

1-py



Kl) and

dipr  —pa | depe  —pa /m
P — . . ax H ay g
H, () ( T ot +— b N 2(y)e™dy

d b2 d b? b? '
i { 101 (a+ 21)1)+ 2:72 (at 2’02)}H2(x) + [%(dun +d2p2)]H2(117)- (4.42)

We show that the rational price of the call-on-put option is the rational price of the perpetual

American put option with the strike price Ly — K. That is Va(z) = Em(e*TTgHg(XTS)) =
—d (Lo Ky )ePn(@=3)
Liz<azy (L2 — K1 — €%) 4+ 1{psay) Zf,:l dn (L filﬁ)ep] 2~ Here z% is the unique solution of
- n

Ly — Ky — e*(¢p; (—1)) "' = 0 and 75 = inf{t > 0: X; < x3}. (Note that z3 < x3.)
Case 1: Ly — K; < €%. Our result follows from the fact that Hy (z) = (Ly — K; — e®)*.

Case 2: L, — K; > €%, In this case, we observe {Hs > 0} = (—00, a3) for some ay > x,. For

Ty < x < ag, we first observe that

@ . diL dy L L “
e_‘”/ Hy(u)e™ du ze_a(m_xp)[ Sad st R 22 2 o
—eo (a+p)A—=p1) (a+p)1—-p2) a a+l
e mmn_ Tl o pepay_ Zdle K
(a+p)1—p1) (a+pm)(1—p2) a
(4.43)
—1 - -
Also, since Ly — <w;(—i)) e’ =0 and ¥ (—i) = fi% + %, we have
dy Ly dy Lo Ly e _ L ( dip1 dapa ) —0
(a+p)I—=p1) (a+p)d—p2) o a+l al@a+l)\a+p  a+p '

This together with (4.42) and (4.43) yields that for z3 < x < @y,

PH (QC) (dlpl ) — o i dgpg ) —ua ) |:(LL26—51(E;—1) n 76’[2L2€_ﬁ2(m;_m) n K1:|
’ rooatpr v atp)(@tp)d—p1)  (a+p2)(1-p2) «

dip1 b’ p1 dap2 b2py ] [—diLoe P @8 _dy Lye P2(#—%)
. . _ _ - K
+|: (CL+ 2 )+ r (a+ 2 ) 1—p1 + 1—p2 !
b? —dypr Lo P70 oy Lye P2 (@)
—(d d — — . 4.44
g s+ dage)| | TPy it (1.49)
In addition, applying similar arguments as in (4.38)-(4.40), we obtain that
dipr n dapa _ r(pr+ 042(/12 + o) (4.45)
at+pr  a+p2 —Hp1P2
2 ro
> dipi = (4.46)
j=1 2 P1P2
and
v’ p3 b*p3 dip1 da2p2
di(apr + —2) + do(apy + —22) =1 + (+) 4.47
1(ap + —=) +dz(apz + —7) oo T o, (4.47)

12



Plugging (4.45)-(4.47) into (4.44), we obtain that for z; <z <@

—dy LoePr@—z3) 5. 5 5.
Pi, () = =22 [a(ﬂ"’fo‘) p1- ot )pta) f‘}
1—p1 P1P2 P1p2 P2
_JL 52(1*%;) 7. + D + Py +
2 2€~ [Oé(f?vl~a)+1_(,02 Ci)(Npl 0‘)+f}_K1
1—p2 P1p2 P1P2 p1
_— (4.48)

Because Hy(r) = Ly — Ky — e” for x < x5, we have Pp,(z) = Py, (x) for © < z¥, where

jo

Hy, = Ly — K1 — €”. By (2.7), Py (x) = Ly — Ky — e®(1,-(—i))~1. Denote by x3 the unique

solution of Ly — Ky — e”(¢);(=i))" = 0. Then we have 23 < x. By Theorem 2.3,Va(z) =

Eo(e7™ Hy(X75)) = 727 Py, (x + 2)f1,(2)dz = [72° Py (x + 2)f1,(2)dz = 1{p<azy (L2 —
T Ly Ky )ePn(@—23)

Ky —€") + 1usayy 2727:1 Lt lli%)n . |

(Put-on-Call option). Note that Hz(x) = L1 —W(x) = 1354} (L1 + Ko —€®) + 1 pcpry (L1 —

Kz(pfilepl(w_xz) + ijIGPZ(w_wz))) and

dipyr  —pa  depy —po /I
Py, () = : : ar [ Hy(y)e®d
Hs (T) < T atp += ot )C N 3(y)e*dy

dip1 b2P1 daps b2p2 b
+{ . “(a+ 5 ) + . (a+ 5 )| Hs(z) + %

2

(daps + dapn) | Hi(2). (4.49)

Case 1: L; + Ky — e® < 0. In this case, we have {H3 > 0} = (—o0,d3) for some a3 < x}

) —(—ip;)) " le j(x—af) -
and, hence, PH3 (33) =1 — Z?:l d; K2 (¢, ( pp.Ji))l Lefi for all x < a3. Note that PH3 (il?)

is strictly decreasing with lim,_,_ Py, (z) = Ly and lim,_,5, Py, (x) < 0(??7). Hence, there

exists unique % < @3 < x} such that Py, («%) = 0. By Theorem 2.3, we deduce that V3(z) =
E$(e*”§H3(XT§)) = ffi’;w Py, (x + 2) f1.(2)dz, where 75 = inf{t > 0: X; < z}}.
Case 2: L; + Ko — % > 0. In this case we have {H3 > 0} = (—00,a3) for some z* < 3. For

xk < x < as, direct calculation gives

67‘“/ Hs(u)e*"du

Li + K>

:e_o‘(”_“Z)(— d1 Ko _ da K> < dip1 n dap2 ) Ky KQ) e
(1 =D(pr+a) (p2=1(p2+a) \p1—1 pr—1/a+l o a+1
Kye @@=22) — dip, dap2 ) e’ L+ Ko

= — — — 4.50
ala+1) prta  pta a+1 o ( )
In addition, by similar approach as in (4.38)-(4.40), we have that
d d p: p:
w1 dopz (Pt a)(p2ta) (4.51)
at+pr  a+p2 —Hp1P2
2 ra
> dipj = (4.52)
j=1 3 P1P2
and
b*pi b*p3 dipy dap2
di(apy + —) + da(aps + —=) =1+ —_—+ — . 4.53
1(apy 5 ) + d2(ap2 5 ) M(Othl a+p2> ( )

13
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Therefore, by (4.49) and (4.50)-(4.53), we have that for 2 < x < @3,

PHg(.’E) :<d1p1 i — o I dgpz ' —po )l:KQG—DA(ZD—wz)( dlpl d2p2 > B e N L+ Ko

r a4+ p r a+ps ala+1) _p1+a P2+« a+1

w dipy dapa
( + 2r (

+ |1+
r\a+pr a+p
__ MG dip1 n da2p2 2€—a(m—w2)
rla+1)\a+p  a+p2
p (dlpl + d202> b

— 5 (dipr +dopo) € + L+ K5 (4.54
rla+1)\a+p a+ po 27,( 11 + ng)]e + L+ Ko ( )

ﬂ (L1 + Kp — %) = [bQ dip1 + dzpz)}ew

w|-1-
From the identity above, we see that P, () is decreasing on (z¥,a3) and

2
. Ko dip1 dap2 )
lim Py, (x) =L+ Ko+
w— () * i, (2) =L ° T(a+1)<a+01 a+ p2

H dlpl dzpz b? ] *
— |1+ + + —(d +d Te,
[ r(a+1)<a+p1 a+p2) 2r( 1/ 2p2) |€

: ~(—ip;))teri ") : .
On (—o0,2}), Py, (z) = L1 — 25:1 LLEICR ;p_]_))l e is decreasing on (—oo, x}). Notice
J

that lim,_, o Pp,(x) = Ly and lim, 5, Py, (z) < 0(?77). Hence, there is an unique =3 < a3

such that Pp,(z3) = 0. (Note that if lim,_, )+ Pu,(2) < 0, then 25 < 7 and the optimal
boundary and the rational price are identical to that for Case 1; otherwise, x5 > z*.) By
Theorem 2.3, we deduce that Vz(z) = E, (e~ H3(X.:)) = fmi;z Py, (x + 2) f1,(2)dz, where

73 =inf{t > 0: X; < a3} ]

(Put-on-Put option). Note that Hy(z) = L1 —U(z) = L{z<usy(€® + L1 — L) + 1(z501} (L1 -

T LocPn@—oh)
gz —dyLaePn® %D
=1 -7, and

Ay =\ dofa =\ o0
Q. (x) =( S )eﬁx Hi(y)e P Vdy
r B-p1 r B—p2 w

- [5151 o By B bQﬁ?)]m;(@ - [b2

. 5 . 5 Z(dlpl + dng)] H,(z) (4.55)

Case 1: e"» + L; — Ly < 0. We have {H; > 0} = (d4,00) for some a4 > zy and Qp,(z) =

2 —dyLo(f (=ip,))~tePn TP
Ly - anl 1—py

lim, 00 Qm, (x) = Ly and lim, 5, Qpu, () < 0(?7?). Hence, there exists an unique x} > a4 such
that Qp,(z}) = 0. By Theorem 2.1, we see that Vy(z) = ]Ez(e*”ZHzl(XTZ)) = [7 . Qmu(z+
4

for all > ay. Notice that Qp,(x) is increasing with

x

m) far, (m)dm, where 77 = inf{¢t > 0: X; > z}}.
Case 2: e%» + Ly — Ly > 0. For this case, we get {Hy > 0} = (@4, 00) for some dy < . For

14
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ay < x <z, we have

P / Hy(y)e PYdy

_Bx—z}) ez; & *(fivlLQ 7C’lv2L2 >_ et Li— Ly
’ (1_[3 B 0 m-0 U-mm-5) 1-8' 8

LoeP@=3) (—67151 —@ﬁz) e’ Ly - L,
= — + — | — + . 4.56
BE-D \B-m "B-m) T-F B (4.56)
Plugging (4.56) into (4.55)and using (4.40) gives for ay < x < xj,
dipy —M\3 &;,52 - L2€ﬁ(r %) (—dipy  —dapo o Ly - L,
Qu, ( < T 2 - +
S e A B—p B-t) 1-8 B
A 31,51 d2P2 b~ T~
1 L — | —(d d .
[ s <5 p1 ,3 p2 ] (6 e ) {QT( 1P+ dapr) €
_ AL; <d1lil n dzliQ) Bla—z3)
rB=1)\B-m B—p2
A dipy dapa Vo~
1 — — | — —(d d T+ Ly — Lo. 4.57
+[+T(1—ﬁ)<ﬁ—p1+5—p2 2r( 101 + dap2) | € + Ly 2 ( )

By using (4.38), (4.39) and the fact that 8p1p2 > Bp1 + Bp2 — B, we obtain that
A dipn dap ) Vo~ Bp1+ Bp2 — B — p1p2
14 — + — | ——(d +d =1- > 0.
r(l1—25) (5 —p B—p2 27”< 1P+ dape) p1p2(B —1)

This together with (4.57) leads to the facts that Qp, () is increasing on (ay, ;) and

lim Qpm,(z) =

_ Lo (—Elvlﬁl n —@52)2
:c—>(ac*)* ’l"(ﬂ — )

B—=p1  B—p2

A dip dap Vo~ s -
1 - — o+ Ly —L
+[ +7’(15)<5ﬁl+5ﬁz> 5y (d1p1 +d2p2) e + Ly — Ly

(4.58)

As noted before,Qp, () is increasing on (z;,00). Also, notice that lim, . Qp,(z) = L; and
lim, 5, Qu,(z) < 0. Hence, there exists an unique z; > @ such that Qp,(z;) = 0. (Note

that if lim,_, () Qu,(x) < 0, then zf > z

» and the optimal boundary and the rational

price are identical to that for Case 1; otherwise, z} < x;) By Theorem 2.1, we see that

Vi(z) = ]Ew(e—rTZH4(XTI)) = f;;_z Qu,(x+m)far, (m)dm, where 77 = inf{t > 0: X; > 2}}. =

Next, we consider the compound options for diffusion processes and assume that X; =
at + bW;. In this case, d; = 1,31 = —1 and p; < 0 < p; are solutions of ax + %b2x2 —r=0.
Recall that g;(z) = € — Ky and W(z) = 1{z>e+)(e” — Ka) + 1{m<mz}zif§e”1(“_“'z). Here

*

L

is the unique value satisfying e®c = ’p’i—Ki. In addition, gs(z) = Lo — €® and U(x) =
_ pLe—ap) P
]-{och;;}(LQ - ez) + 1{:c>3: } dlele 71 22

, where z7 is the unique value such that e” p = 50

(Call-on-Call option). Notice that H;(z) = 1{y>qx}(e” —Kl—K2)+1{m<a:*}< DG ppr(z—ac) —

15



Kl) and Qu, (x) = — 12 (a4 L20) H, (2) — P42 H) (7). First, notice that if 7 — Ky — Ky < 0,
then H (z) = (e®* — K1 — K3)* and hence the rational price of the call-on-call option is the
rational price of the perpetual American call option with the strike price K+ K. Next, consider
the case e®c — K; — Ko > 0. Then {H, >0} = (61, oo) for some a; < z. By using the facts
that dy = 1, dy = —1, gl%(a—i— 1’2%) = —1 and ——plpl =1, , we see that for a; <z < a

dip v25, [ di K. . b2 dip K.
Qu,(v) = — L “(a+ 2/)1)< — epl(w%)—fﬁ) (d191)< /)11[)1 12 e (@ )> —Ki.

r p1—1 2r

For x > z}, we have Hi(z) = e* — K1 — K3 and Qp, (v) = ¢ — K; — K3 — <. By the same
argument as for the jump-diffusion processes, the rational price of the call—on—call option is
the rational price of the perpetual American call option with the strike price K; + Ks. That

is Vi(2) = 1igzany(e® — K1 — K2) + 1{w<$1}Mepl(z_IT). Here z7 is the unique value

p1—1
z; _ p1(K1+K>)

p1—1 u

satisfying e

) ) T P
(Call-on-Put option). Notice that Hy(z) = 1{y<ys) (Lo — K1 —€%)+1{500) (dlL?‘le_;}lp -
Kl) and Pg,(z) = dl—rpl(a + bz%)Hg(x) + bz‘;%’“Hé(x). First, notice that if Ly — Kj — % < 0
then Hi (z) = (Ly — K1 — €®)* and the rational price of the call-on-put option is the rational
price of the perpetual American put option with the strike price Lo — K. Next, consider the

case in which Ly — K7 — €*» > 0. Then {Hy > 0} = (—o0,ay) for some ay > x. Taking

2
account of the facts that d = 1, 9L(a + ©£1) = 1 and — dlplpl = 1, we have that for
-~ _ L eﬁl(mfm;) 1 LoeP1®= op) o
x;<x<a2,PH2(x)_21_7ﬁl—K1+(ﬁl) 121 — = . Also, for z < z3, we

have Ho(z) = Lo — K1 — €* and Ppy,(z) = (-1 + = )e + Ly — Kj. By the same argument
as for the jump-diffusion processes, the rational price of the call-on-put option is the rational

price of the perpetual American put option with the strike price Lo — Kj. That is Va(z) =

—di (Lo—Kq)eP1(@—z3)

1{w§m’2‘}(L2 - Ky — ez) + 1{w>m§} 1(La 1_1;.216 :

eTs — —P1(L2—K1) [ ]
1-p1 ’

, where x5 is the unique value such that

(Put-on-Call option). Note that H3(x) = 1{z>4+) (L1 +K2—e’”)+1{1§xz}(L1—%epl(”_“@)
and Pp,(z) = dﬂ# (a+ bg%)Hg(:ﬁ) + g—j(dlpl)Hé(x). First, notice that if Ly + K < e®:, then
{H3 > 0} = (—o0,a3) for some a3 < z} and Hz(z) = L; — ‘ﬁ—fiepl(“”w:). It follows from
—(_i —lgpi(z—af) . . . .
(2.7) that Pp,(z) = Ly — Ko (W, ( p’ill)l § . Clearly Pp, () is strictly decreasing with
lim,_,_ oo Py, (z) = L1 and lim,_,5, Py, (z) < 0(?7?). Therefore, there exists an unique xj§ < x
such that P, (z3) = 0. By Theorem 2.3, we deduce that Vs(z) = [*2 " Py, (z + 2) f1, (2)dz
Next, consider the case L + Ky > e*<. We have {H3 > 0} = (—00,as3) for some ag > x.
Using the facts d; =1, dlrpl (a+ b22pl) =1 and M =1, we get that for 2} <z < as,

d1p1

dy b 1
/ WV o — [y + Ky + (= — 1)e®. (4.59)

2r P1

Py, (z) = (a+b22p1){L1+K2_ew}_

On the other hand, for z < z, Py,(x) = L; — dlK?(w:(jpll_))l_lepl(m_mc). Therefore Py, (z) is a
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decreasing function on (—oo,a3) and

. 1—p1, p1— p1
lim Py, (x)=L1+ Ko+ (——)e% =L — ——K>. 4.60
v (z3)* (1) = Lt Ko p1 ) Y- (4.60)
If Ly < %Kg, then there is only one x} < 2% such that P, (x3) = 0, ie., e®s =
W. Therefore, by Theorem 2.3, we deduce that 23 is the optimal boundary and for
T > Ty,

3 [K2€pl(u—$2) (

Va(x) Z/m3 Py (u) fr, (u — x)du = / —1+ fl) + Ll} (—p1)e P =D gy

oL =1 P1
o () (Kﬁ_m(%_%) + L1> __ L e i)
1—p p1
Also, for z < x}, we have Vs(z) = L, — %ﬁw
On the other hand, if L1 > ﬁﬁlpj‘fl) Ko, then there is only one a3} > 2% such that Py, (2%) =0,
that is e®s = %. By Theorem 2.3, we deduce that zj is the optimal boundary and the

value function is given as follows. For z > z}, we have

Vo) - | " Prru) o (u — 2)du + / " Pu(u) o, (u — x)du

—o0
_opi(a—a?) (exz N P1K2> 4 Pr(a=a3) < Lyt Ky - ex)
I—p
_ep(e=a3) € (4.61)
—p1
For x < a},V3(z) = L1 — %@ and for o <z < af,Vi(x) = L + Ky — €”. n

T LooPLE=D)
(Put-on-Put option). Notice that Hy(z) = l{mgx;}(e$+L1—L2)+1{m>x;} (Ll—_dlLi‘e;l>

and Qp, (z) = —@-((H— R%)Hél(z)—b%gifl&;(x). First, notice that if e*» + Ly — Ly < 0, then

. . T LaeP1 )

{H, > 0} = (@4, 00) for some a4 > z and Hy(z) = Ll—%;lp. It follows from (2.4) that
pr(z—zp) 1 . .

Qu,(z) = %(_1+%)+L1. Hence there exists an unique z3 > x such that Qg, (v}) =

0. By Theorem 2.1, z} is the optimal boundary and V; = fo;z Qu,(x + m)fa, (m)dm,

x

where far, (m) = dip1e™"1fp,50y. Next, consider the case e®» 4+ Ly — Ly > 0. Then we

get {Hy > 0} = (a@,00) for some @ < ;. By using the facts that d; = 1, d = —1,
leﬁl (a+ bz%) = —1 and —gﬁlpl =1, we see that for @ <z < x},
e’ 1
Qu(0) =€ Ly~ Lyt (=5 = (1= )"+ i~ Ly (4.62)

and for z > x;

LoeP @) G Lehr(@=a)  [,eh(e—a)) p
2€ P1inze - 2€ (1424 4, (4.63)

x :L — — — - ~
Q. () ! 1—p p1(1—p1) L—p1 p1

Therefore Qp, (x) is an increasing function on (@, co) with

. pr— 1, - (1 —p1)Le
lim g)=(——)e"r + [ — Ly =~—~—"L"" 1L ],. 4.64
o (2)- QH4( ) ( o1 ) 1 2 pl(]- — P1) 1 ( )
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If (Pr=p1)le

- T L; < 0 then there exists only one z; > z

5 such that Qp,(z}) = 0, that is

eP1%i = % By Theorem 2.1, we see that z} is the optimal boundary and for = < z},
2 Pl p1)e

© [ (5 — N i
/ Qu, (u) o, (u — )du :/ {Mepl(“%) + L p167p1(ufx)du
) (1=p1)p1
_en @) @i—ay) AL pemad) (o) € (4.65)

p1(1—p1) p1

T\ Lo ePL
Also, for x >z, Vi(z) = L, — % On the other hand, if w + L > 0 then

1-p1 p1)
a — (Le— L1)p1
pP1—

there is only one xj < z7 such that Qg,(z}) =0, i.e., e By Theorem 2.1, x} is

the optimal boundary and for x < xj,

- /x” Qu,(w) far, (u — x)du + /oo Qu, () far, (u — x)du

L2~ ) +ep1(3:—x2) <€xz + L — L2)
I—p

ez € (4.66)
P1

=er1(@=7p) (ex; + Lo —

Also, we have for z > z},

() Ly
1—p '

V4(JC) = 1{wz§mgw;}€z — L1 — Ly + 1{$>w;}L1 - (467)

5 Numerical Results

Example 5.1 (call-on-call option). We consider the strike prices K1 = 10 and Ko = 50. For

the diffusion process, x; = 4.2120, x7 = 4.3943, (d1, 81) (1,-1) and (p1,p1) = (3.8577,—0.4977).

For the exponential jump-diffusion process, we acquire that x* = 5.3363, x = 5.5186, (dy, da, dl, dg) =
(0.6275,0.3724, —0.8955, —0.1044) and (p1, p2, p1, p2) = (1.2029, 6.9435, —0.2359, —3.4791). For

the mizture-exponential jump-diffusion process, we have that ¥ = 4.7666, x5 = 4.9490, (d1, d2, d3, Jl, 52, (73)
= (0.4405,0.1445,0.4149, —0.7975, —0.05012, —0.1523) and (p1, p2, P3, P1, P2, P3)

= (1.3605,3.3113,7.2730, —0.03213, —0.2879, —2.8148).

Example 5.2 (call-on-put option). We consider the strike prices K1 = 20 and Ly = 50. For the

diffusion process, x; = 2.8103, x5 = 2.2995, (d1,dy) = (1,-1) and (p1, p1) = (3.8577, —0.4977).

For the exponential jump-diffusion process, we acquire that x; = 2.5340, x5 = 2.0232, (dy,ds, 51, gg) =
(0.6275,0.3724, —0.8955, —0.1044) and (p1, p2, p1, p2) = (1.2029,6.9435, —0.2359, —3.4791). For

the mizture-exponential jump-diffusion process, we have that x;, = 2.0042, x5 = 1.4934, (d1,da,ds, Jb 327 673)
= (0.4405,0.1445,0.4149, —0.7975, —0.05012, —0.1523) and (p1, p2, P3, P1, P2, P3)

= (1.3605, 3.3113, 7.2730, —0.03213, —0.2879, —2.8148).

Example 5.3 (put-on-call option). We consider the strike prices Ly = 300 and Ko = 50.
For the diffusion process, we have that x7 = 4.2120, 3 = 4.7562, (dy,d1) = (1,—1) and
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(p1,p1) = (3.8577,—0.4977). For the exponential jump-diffusion process, we acquire that x =

5.3363, =} = 4.6442, (dl,dg,gl,glvz) = (0.6275,0.3724, —0.8955, —0.1044) and (p1, p2, p1,p2) =

(1.2029, 6.9435, —0.2359, —3.4791). For the mizture-exponential jump-diffusion process, we have

that x¥ = 4.7666, 2% = 4.3958, (d1, d2, d3, dy, d, d3) = (0.4405,0.1445,0.4149, —0.7975, —0.0501, —0.1523)
and (p1, p2, p3, P1, Pe, B3) = (1.3605, 3.3113, 7.2730, —0.0321, —0.2879, —2.8148).

Example 5.4 (put-on-put option). We consider the strike prices L1 = 45 and Ly = 50. For the
diffusion process, ry = 2.8103, x; = 1.9094, (di, di) = (1,-1) and (p1,p1) = (3.8577,—0.4977).

For the exponential jump-diffusion process, we acquire that x; = 2.5340, x} = 2.4091, (dy,da, (Z, 672) =
(0.6275,0.3724, —0.8955, —0.1044) and (p1, p2, p1, p2) = (1.2029,6.9435, —0.2359, —3.4791). For

the mizture-exponential jump-diffusion process, we acquire that x, = 2.0042, xj = 2.0176,
(dy,ds, ds, dy,ds, ds) = (0.4405,0.1445,0.4149, —0.7975, —0.0501, —0.1523) and (p1, p2, p3, P1, P2, P3) =
(1.3605,3.3113,7.2730, —0.0321, —0.2879, —2.8148).

200
150+
100+

50+

0 T S = T T

4.5 5.0 5.5
Optimal boundary for jump-diffusion process with vl=v2=1

® Optimal boundary for diffusion process

Value function for jump-diffusion process with v1=v2=1

Reward function for jump-diffusion process with vl=v2=1

----- Value function for diffusion process

----- Reward function for diffusion process

Figure 1: call-on-call options for jump-diffusion process with vl1=v2=1 and diffusion process.
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X

Optimal boundary for jump-diffusion process v1=v2=2
®  Optimal boundary for jump-diffusion process vl=v2=1
Value function for jump-diffusion process with v1=v2=2
Reward function for jump-diffusion process for v1=v2=2
----- Value function for jump-diffusion process with vl=v2=1
----- Reward function for jump-diffusion process with vi=v2=1

Figure 2: call-on-call options for jump-diffusion process with vl=v2=1 and vl=v2=2.

0 T | Sa—— T \l
0 1 2 3 4 5 6

Optimal boundary for jump-diffusion process with vl=v2=1
e  Optimal boundary for diffusion process
Value function for jump-diffusion process with vl=v2=1
— Reward function for jump-diffusion process with vl=v2=1
----- Value function for diffusion process
----- Reward function for diffusion process

Figure 3: call-on-put options for jump-diffusion process with vl1=v2=1 and diffusion process.
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X

®  Optimal boundary for jump-diffusion process with vl=v2=1
Optimal boundary for jump-diffusion process with vl=v2=2
----- Value function for jump-diffusion process with vi=v2=1
----- Reward function for jump-diffusion process with vl=v2=1
Value function for jump-diffusion process with v1=v2=2
Reward function for jump-diffusion process with v1=v2=2

Figure 4: call-on-put options for jump-diffusion process with vl=v2=1 and vl=v2=2.
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® Optimal boundary for diffusion process
Value function for jump-diffusion process with vl=v2=1
Reward function for jump-diffusion process with vl=v2=1
----- Value function for diffusion process
----- Reward function for diffusion process

Figure 5: put-on-call options for jump-diffusion process with vl1=v2=1 and diffusion process.
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Optimal boundary for jump-diffusion process with v1=v2=2
® Optimal boundary for jump-diffusion process with v1=v2=1
Value function for jump-diffusion process with v1=v2=2
Reward function for jump-diffusion process with v1=v2=2
""" Value function for jump-diffusion process with vl=v2=1
----- Reward function for jump-diffusion process with vl1=v2=1

Figure 6: put-on-call options for jump-diffusion process with vl=v2=1 and vl=v2=2.
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® Optimal boundary for diffusion process
Value function for jump-diffusion process with vl=v2=1
Reward function for jump-diffusion process with v1=v2=1
----- Value function for diffusion process
----- Reward function for diffusion process

Figure 7: put-on-put options for jump-diffusion process with vl=v2=1 and diffusion process.
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® Optimal boundary for jump-diffusion process with vl=v2=1
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----- Value function for jump-diffusion process with v1=v2=1
----- Reward function for jump-diffusion process with vl=v2=1
Value function for jump-diffusion process with v1=v2=2
Reward function for jump-diffusion process with v1=v2=2

Figure 8: put-on-put options for jump-diffusion process with vl=v2=1 and vl=v2=2.
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Table 1: Parameters for Jump-Diffusion Processes

Diffusion Process Exponent Jump Diffusion Process Mixture Exponent Jump Diffusion Process
-0.105 -0.105 -0.105
0.25 0.25 0.25
- 0.3 0.3
m - 0.3 0.3
B1 - 2.5 2
ay - 1.428571429 0.1333333333
B2 - - 4
asg - - 0.4166666667
c11 - 1 0.5
Cco1 - - 0.5
11 - 1 0.5
C21 - - 0.5

Table 2: Compound options

Diffusion Process Exponent Jump Diffusion Process Mixture Exponent Jump Diffusion Process

call-on-call

K1 10 10 10

Ko 50 50 50

) 4.212076578 5.336364625 4.766693426

] 4.394398135 5.518686182 4.949014981
call-on-put

K1 20 20 20

Lo 50 50 50

’I'; 2.810341610 2.534084694 2.004288173

x5 2.299515986 2.023259069 1.493462547
put-on-call

Ly 300 300 300

Ko 50 50 50

x 4.212076578 5.336364625 4.766693426

x3 4.756251761 4.644257544 4.395873979
put-on-put

Ly 45 45 45

Lo 50 50 50

z; 2.810341610 2.534084694 2.004288173

) 1.909491485 2.409138962 2.017624207
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