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本研究報告提出一頻域光波導模態的高階精確計算方法和其應用。我們以擬譜法為基礎將

麥克士威方程式進行離散，邊界條件的配置是以補償法嵌入格式中，所得的方程為線性系

統方程組。我們對格式進行了詳細的穩定性分析，接著進行程式編寫和測試。計算結果與

理論分析是一致的。最後，我們以演算法對各類光波導進行傳播特性分析，並討論計算的

物理現象。

In this report, we propose a high-order accurate scheme for computing optical waveguide

modes. We employ the Legendre pseudospectral method to discretize the Maxwell’s equa-

tions. Boundary conditions are imposed to the scheme through the penalty methodology.

This approach leads to a system of linear equations. We pay special attention to analysis

the stability of the schemes, and we obtain suitable penalty parameters for stable computa-

tions. The numerical method is validated through direct computations, and the results are

consistent with the theoretical analysis. In addition, we conduct optical wave analysis for

various kinds of waveguides to study wave propagations in these devises.

關鍵字：擬譜法，邊界補償法，頻域麥克士威方程式，光波導

Keywords: pseudospectral methods, penalty boundary conditions, frequency-domain Maxwell’s

equations, optical waveguides



Summary of the Report

Frequency-domain (FD) and Time-domain (TD) computational electromagnetic (EM) meth-

ods are playing important roles in optic wave analysis. To investigate the transition of EM

waves, TD methods (see [10, 11, 14, 15] for example) are suitable. On the other hand, FD al-

gorithms [4, 7, 8, 12, 13] are commonly used for studying the time-harmonic electromagnetic

wave properties, since the methods solve EM wave problems based on a single frequency. In

this report we describe a novel method for computing accurate propagation characteristics

of optical waveguide of complex geometries.

The traditional methods for analyzing optical waves in guiding devises are based on

solving the Helmholtz equations which involves second derivatives in space. The numerical

formulations results into linear systems of equations having large condition numbers, due

to the numerical second differential operators. Hence, the numerical solutions require many

iterations to converge within the desired accuracy. To overcome this issue we propose a

formulation based on the Maxwell’s equations which involves first derivatives in space only.

Thus, the condition numbers of the Maxwell-based formulation are smaller than those of the

Helmholtz-based formulation. This leads to less iteration steps toward to the convergence

of solutions. Moreover, another potential advantage of using the Maxwell equations based

formulation is that one can directly borrow important numerical theories developed from the

TD Maxwell equations based computational framework [10, 11], for instance, the penalty

methodology for imposing boundary conditions [5, 6, 9] and perfectly matched layer type

absorbing boundary conditions [1, 2, 3] which have been used in real applications.

In addition, inspired by the constructed pseudopsectral FD method for optic waveguide

analysis, we construct an error minimized pseudospectral penalty direct Poission solver. It is

found the that imposition of boundary conditions has great effects on the solution accuracy

and the penalty parameters can be obtained analytically to yield numerical solutions with

error being minimized. Numerical experiments are conducted and the results are consistent

with the theoretical analysis. The method is very easy to implement and it can help improve

the accuracy of pseudospectral Poission solver used in the scientific community.
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The details and applications of these methods are summarized in the following journal

papers included in this report.
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A High-Accuracy Multidomain Legendre
Pseudospectral Frequency-Domain Method With
Penalty Scheme for Solving Scattering and
Coupling Problems of Nano-Cylinders
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Abstract—A new multidomain pseudospectral frequency-do-
main (PSFD) method based on the Legendre polynomials with
penalty scheme is developed for numerically modeling electromag-
netic wave scattering problems. The primary aim of the proposed
method is to more accurately analyzing scattering and coupling
problems in plasmonics, in which optical waves interact with
nanometer-sized metallic structures. Using light scattering by a
silver circular cylinder as a first example, the formulated method
is demonstrated to achieve numerical accuracy in near-field
calculations on the order of with respect to a unity field
strength of the incident wave with excellent exponentially con-
vergent behavior in numerical accuracy. Then, scattering by a
dielectric square cylinder and that by several coupled metallic
structures involving circular cylinders, square cylinders, or di-
electric coated cylinders are examined to provide high-accuracy
coupled near-field results.

Index Terms—Electromagnetic near fields, electromagnetic
wave scattering, plasmonics, pseudospectral frequency-domain
(PSFD) method.

I. INTRODUCTION

P LASMONICS is a relatively new field concerning the col-
lective electromagnetic resonances of free electrons in-

side nanometer-scaled metallic structures [1], which has been
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widely studied and applied in many areas, like surface enhanced
Raman scattering (SERS) [2], nanoantennas [3], waveguides
[4], etc. Strong electromagnetic fields can be locally enhanced
and radiated by this collective oscillation of electric charges.
The field coupling between metallic nanoparticles under dif-
ferent incident polarizations thus plays an important role in such
plasmonics research. Accurate electromagnetic near-field cal-
culation is essential and significant for understanding the un-
derlying optical behaviors [5]. However, due to the nanometer-
sized dimension and spacing of metallic particles as well as
strongly enhanced near fields, there exist challenges to achieve
relevant numerical simulations with good accuracy. The Mie
theory [6] and the multiple scattering methods [7], [8] for ana-
lytically calculating light wave scattering by spheres or circular
cylinders have been proposed. But for more general geometries
of the plasmonic objects, numerical methods, like the finite-dif-
ference time-domain (FDTD)method [9], [10] and the finite ele-
ment method (FEM) [11], [12], could provide more flexibilities.
Plasmon resonance and field enhancement in complicated struc-
tures have also been analyzed using the surface integral method
[13] and the volume integral method [14] and discussed by the
surface-charge hybridization picture [15].
To more accurately model the interaction of electromag-

netic waves with metallic structures, we present here a new
Legendre pseudospectral frequency-domain (PSFD) method to
solve Maxwell’s equations for relevant two-dimensional (2-D)
scattering problems. Although not so popularly used, the pseu-
dospectral methods have been demonstrated their high-order
accuracy and fast convergence behavior in applications to
computational electromagnetics in time domain [16]–[19]. The
idea of the pseudospectral method in frequency domain was
initially proposed by Liu [20] based on Chebyshev polynomials
and the second-order Helmholtz equation to solve a scattering
problem. Later, based on Helmholtz equations, pseudospectral
eigenmode solvers have been established for analyzing 2-D
photonic crystals [21] and obtaining full-vector optical wave-
guide modes [22]. In this paper, we formulate our new PSFD
method, instead, from the first-order differential equations
using the similar scheme of a related Legendre pseudospectral
time-domain (PSTD) method recently established [23] and
utilizing the Legendre polynomials as the interpolation basis.
Besides, the penalty scheme as developed in [23] is used to
better handle boundary conditions for well-posedness consid-
eration, and the perfectly matched layers (PMLs) [24]–[26]
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are incorporated into the PSFD formulation to absorb out-
ward propagating waves and effectively reduce reflection of
out-going waves. The multidomain approach is employed, as
in [23], with which the computational domain with the PMLs is
divided into suitable number of subdomains, with the material
interfaces fitting the sides of some subdomains, so that the field
continuity conditions can be accurately fulfilled. The equations
approximating the physical processes of the corresponding sub-
domains are finally packed into a linear matrix equation which
can be easily solved by iterative algorithms. Using the PSFD
method, we will show that numerical accuracy on the order
of can be achieved in the scattered-field calculation of a
circular metallic cylinder, as compared with known analytical
results provided in [27], [28]. More importantly, this PSFD
method provides exponentially convergent rate in numerical
accuracy with respect to grid resolution, which implies its effi-
ciency in that few grid points added can exponentially increase
computation accuracy. We believe this method can provide
high-accuracy results in the analysis of electromagnetic field
characteristics of plasmonic problems including the important
ones of coupled cylinder structures.
The finite-difference time-domain (FDTD) method [9] has

been a popular numerical analysis and simulation method in
computational electromagnetics, including plasmonics. For
curved material interfaces, the simple stair-casing approxima-
tion of such interfaces as often utilized in the FDTD calculation
of the electromagnetic field may result in numerical-accuracy
reduction in field values along the curved interface [29]. How-
ever, obtaining high-accuracy near fields for such situations
can be important for understanding the plasmonic phenomenon
and proposing relevant applications. More efforts must be
paid for overcoming such stair-casing problem in the FDTD
method, e.g., using the conformal scheme [30], the triangular
mesh [31], the effective permittivity [32], etc. The PSFD
method, however, can avoid such stair-casing problem since its
subdomain partitioning with curvilinear geometries can match
exactly to the shape of the structure interface [33], thus can
provide accurate computation.
Furthermore, in numerically modeling the plasmonic struc-

tures, material dispersive properties of metals need to be
carefully considered. In time-domain computation methods,
the auxiliary differential equation (ADE) technique [9] can
be employed to take into account the Drude-Lorentz material
model for a metal in the simulation. But the parameters in
the material dispersion model need to be carefully assigned
through curve fitting the measured dielectric function of the
metal [34], [35]. As a frequency-domain method, however,
the PSFD method can directly adopt the measured or given
complex dielectric constant of the metal at the considered fre-
quency without needing the ADE approach and the associated
curve-fitting procedure for treating material dispersion in the
electromagnetic calculations.
The remainder of this paper is outlined as follows. Maxwell’s

equations with the penalty scheme for the 2-D scattering
problem are described in Section II. The Legendre pseudospec-
tral method is introduced in Section III. Scattering calculation
results for a silver circular cylinder, a dielectric square cylinder,
and several coupled metallic structures involving circular
cylinders, square cylinders, or dielectric coated cylinders are
presented and discussed in Section IV. Some remarks on the

Fig. 1. Computational domain with pseudospectral subdomain division for the
scenario in which a plane wave is scattered by a 2-D object.

proposed formulation and scheme are given in Section V. The
conclusion is drawn in Section VI.

II. MAXWELL’S EQUATIONS WITH THE PENALTY SCHEME

For time-harmonic electromagnetic fields, and , in a
linear isotropic medium region with permittivity and per-
meability , Maxwell’s curl equations can be written in the
complex form as

(1a)

(1b)

where and represent the source electric and magnetic
current densities, respectively, and is the angular frequency.
Here, we consider the 2-D problem with no field variation
along the direction. Fig. 1 shows one example scenario in
which a plane wave is scattered by a 2-D circular cylinder.
We particularly study the transverse-magnetic (TM) waves
with , and field components because of plasmonics
applications. Therefore, Maxwell’s curl equations become three
first-order equations as

(2a)

(2b)

(2c)

In the multidomain PSFD method, the computational do-
main is partitioned into suitable non-overlapping subdomains
of curvilinear quadrilateral shape. Using the scattering by a cir-
cular cylinder as depicted in Fig. 1 as an example, if boundary
conditions are rigorously considered at the interface between
adjacent subdomains I and II with the unit normal vector
perpendicular to the interface expressed as ,
the continuity of tangential fields across the interface for
source-free dielectrics requires that

(3a)

(3b)
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for the TM waves, where the superscripts, and , denote
the subdomains and denotes the tangential electric field, i.e.,

.
In our formulation, an incident TM plane wave is generated

by assigning a uniform -directed source surface current density
with unit A/m on the PML/air interface, as shown in Fig. 1,

using the required boundary condition, ,
where I and II refer to the corresponding PML subdomain and
air subdomain, respectively, and is taken to be zero in (2c).
This -directed would generate both -polarized rightward
(to the PML) and leftward propagating plane waves [36], with
the rightward wave absorbed by the PML. Note that the relation
between and , the latter being the volume current density
with unit A/m , is if flows in the direction, and
we would have , where is the quadrature weight
on the interface which will be defined in the next section.
In [23], the Legendre PSTD formulation with the penalty

scheme based on well-posed boundary impositions of physical
boundary conditions in terms of characteristic variables has
been discussed in detail. The same penalty scheme is employed
here to impose weakly characteristic boundary conditions.
Briefly speaking, (2) can be first written as

(4)

where , and the ma-
trices and are simply constructed with 0, 1, and cor-
responding to the presence of fields in (2). Next, the penalty term

will be added. The ma-
trices, and , are constructed respectively from the eigen-
values and eigenvectors of the matrix , which is defined
as , and the characteristic state vectors

are defined as as in [23]. Then, after
matrix multiplications of , and in the
penalty term ,Maxwell’s equations in (2) with penalty
added become

(5a)

(5b)

(5c)

where is unity when the grid point is on the boundary edge,
and is zero otherwise [23]. The variable is a free parameter
defined by Theorem 3.1 in [23] with value for supporting
(5) to be a convergent system during iteration processes. In the
PML subdomains, (5) are rewritten, following the derivations
in [23] and [26], as

(6a)

(6b)

(6c)

where and are absorbing profiles along the and axes,
respectively, and denotes the derivative of with respect
to . Taking as an example, we choose

, where is the distance of the point,
, from the initial point, is the total length of PML,
and the parameters and are free variables for tuning the
PML performance. After employing the Legendre pseudospec-
tral scheme and packing all subdomains, (5) and (6) would lead
to a linear matrix equation, , with the unknown vector
consisting of and fields, the vector corresponding to

the known sources, and the matrix consisting of spatial dif-
ferential operators and penalty terms. The unknown electric and
magnetic fields can be solved from using efficient
iterative algorithms such as the bi-conjugate gradient (BiCG)
method.

III. LEGENDRE PSEUDOSPECTRAL METHOD

Now, we discuss the Legendre pseudospectral method for
numerically treating the spatial derivatives in the above gov-
erning equations. Under the multidomain scheme, each curvi-
linear quadrilateral subdomain region in Cartesian coordinates

can be mapped onto a square region in
curvilinear coordinates by using the transfinite blending
function described in [29] to construct and

. Applying the chain rule, derivatives of a 2-D function
will then become

(7a)

(7b)

Some properties of Legendre polynomials, which we use as the
basis for the interpolation of a function, will be given below.
In the Legendre pseudospectral method, spatial arrangement

of grid points is defined by the Legendre–Gauss–Lobatto (LGL)
quadrature points arranged in the interval , which are
the roots of the polynomial [23] with the prime
denoting derivative and being the Legendre polynomial of
degree defined by

(8)

Associated with these LGL quadrature points are a set of
quadrature weights for . If is a



WANG et al.: HIGH-ACCURACY MULTIDOMAIN LEGENDRE PSFD METHOD WITH PENALTY SCHEME 771

polynomial of degree at most , we have the quadrature
rule [23]

(9)

where the quadrature weights are defined by

otherwise.
(10)

Based on these LGL collocation points, one can use the de-
gree- Lagrange interpolation polynomials as the bases
to approximate an arbitrary function such that

(11)

where

(12)

Then, the derivative of the function at the LGL quadrature
point can also be approximated as

(13)

The differential coefficient is defined in [23] by

otherwise

(14)

if ; and

(15)

if . The so-called differential matrix operator with
elements can thus be substituted into the spatial derivative in
(13) as

...
...

...
...

(16)

This is the key feature of the Legendre PSFD method, i.e., for
the 1-D example, the derivative of at an LGL point in
the region can be approximated in terms of values
at the LGL points in the same region. Spatial derivatives
of fields in (5)–(7) can be simply replaced by these differential
matrix operators in the linear matrix system. The matrix
thus becomes a sparse matrix containing penalty, PML, and
terms. Note that those terms for spatial derivatives repeat-
edly appear in and are located with regularity, thus only this
small matrix in (16) is needed to be stored and our PSFD im-
plementation will be memory-saving, which can then be applied
to solve large problems or those requiring dense grid points. In

Fig. 2. Portion of the subdomain division profile in the computational domain
near the cylinder scatterers (the colored region) for . (a) A single cir-
cular cylinder. (b) Two coupled circular cylinders. (c) Two coupled rectangular
cylinders. (d) 45 -tilted square cylinder.

Fig. 2, the grid meshes based on the LGL points in each sub-
domain, except the PML ones, are plotted for . As
shown in the figure, the curved structure and the whole compu-
tational region are partitioned into curvilinear subdomains, and

LGL grid points are not uniformly distributed
but somewhat following the outline of the domain edges. Please
note that the LGL grid points at each edge side of a subdomain
are colocated with the LGL grid points at one edge side of its
adjacent subdomain. These colocated grid points are counted as
distinct sets of points, and the penalty scheme is applied on the
two sets for exchanging information of boundary conditions.

IV. NUMERICAL RESULTS

Here, the PSFDmethod is applied to analyze some basic scat-
tering problems. Accuracy will be first verified by examining
a circular-metallic-cylinder problem and comparing the results
with those obtained from the analytical approach. With the high
accuracy provided, the PSFDmethod is then applied to simulate
several coupled structures between closely placed, in nanometer
scale, metallic cylinders and investigate their optical behaviors.

A. Single Circular Metallic Cylinder

First, we examine the accuracy of the formulated Legendre
PSFD method by solving a simple problem of TM scattering
of a plane wave by a silver circular cylinder in free space at
an optical wavelength. Such problem is known to have an an-
alytical solution [27], [28]. Nevertheless, it is a good example
to test how accurate a numerical analysis method can perform
when dealing with plasmonic structures. The computational-do-
main setup with PMLs and the subdomain division is as shown
in Fig. 1, and the grid mesh is as depicted in Fig. 2(a). The ra-
dius of the cylinder is m and the wavelength of
the incident plane wave is m. At this wavelength, the
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Fig. 3. Maximum absolute difference between the PSFD calculated field value
and its corresponding analytical one scanned over the computational domain
versus the degree of the Legendre polynomial used for the , and
components, respectively, for TM scattering of a plane light wave at m
by a silver circular cylinder of radius 0.25 m in free space.

measured complex dielectric constant of silver is about
[34]. Fig. 3 shows the maximum absolute

difference, , between the PSFD calculated field value and
its corresponding analytical one scanned over the computational
domain versus the degree of the Legendre polynomial used
for the , and components, respectively, when the in-
cident electric field intensity is 1 V/m, where refers to the
field component. For , the difference in is considered,
where is the free-space impedance. It is seen that the errors
are on the order of when and on the order of
when and can get down to when . These
results demonstrate that our PSFD algorithm can provide high
accuracy for solving light scattering by plasmonic structures.
Also, the convergent plots show that the error exponentially,
rather than linearly, decreases with respect to . This is the
inherent characteristic of the spectral method having the con-
vergent ratio proportional to . Fig. 4(a)–(c)
plots the field profiles for , and , respectively,
when the incident TM wave comes from right with po-
larization. The computing resources used are described as fol-
lows. For , and 12, the required matrix sizes are
31 164, 51 516, 76 956, and 107 484, respectively, the computer
running times are 175, 429, 958, and 1970 s, respectively, and
the memory usages are 9, 14, 20, and 27 Mb, respectively, exe-
cuted by a single processing core on a personal computer with
quad-core i7 3.42-GHz CPU in Linux environment. The compu-
tation time approximately doubles as is increased by two, and
the memory usages are not much. Note that the accuracy with

can be more than what is required in practice since the
error in the calculated field is on the order of as mentioned
above.
In this verifying example of the PSFDmethod achieving such

high accuracy, PML tuning is also an important process. From
the given absorbing profile of PML, free parameters and
can be varied to optimize the accuracy. According to our

Fig. 4. Field profiles for (a) , (b) , and (c) , respectively, for the
case of Fig. 3, with the incident wave propagating from right to left.

experiences and in this case, the choices of and
or 3 can provide better results as shown. This gives a

gradually growing profile, and we adopt a wide PML with 3- m
thickness for reducing reflection of waves.

B. The Single Dielectric Square Cylinder

Scattering of a 45 -tilted dielectric square cylinder investi-
gated in [37] is considered next. The side length of the square
is , where is the free-space wavenumber,
and the plane wave incidence is as indicated in the inset of Fig. 5
with wavelength . Here, the dimensions are all normalized
to according to [37], so the size of the dielectric cylinder is
measured in terms of . Note that the square was as-
sumed in [37] to have rounded corners with a radius of curvature

but it is assumed to have sharp corners in our cal-
culations. Thus, there would be four singular points expected at
these sharp corners in our results. The tangential electric field of
the TM case versus , where is the distance along the upper
square surface from the left apex to the right apex, is shown in
Fig. 5(a) and (b) for cylinders of dielectric constants
and , respectively. The calculations were done for
from 12 up to 28. The results are seen to well agree with those
of [37], even for smaller s. Notice that the fields at the sin-
gular points, for example, grow up as the grid reso-
lution (or ) increases. Here, we used only one subdomain for
this square structure, and there are points along

to . The field distributions with are
depicted in Fig. 6. Because the incident wave comes from the
left, the fields are seen to be longitudinally symmetric. The sin-
gular points can be observed at the upper and bottom apexes
in Fig. 6(b). To observe more clearly the singular-point char-
acteristics, the expanded view of those results in Fig. 5(a) near

is shown in Fig. 5(c). Note that, at , there
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Fig. 5. Tangential electric field versus for (a)
and (b) for the scattering of a 45 -tilted dielectric square cylinder

with side length . The dots are adopted from [37] and other lines stand
for PSFD calculated results of different degrees . (c) The expanded view
of those results in (a) near together with the corresponding PSFD
calculated total electric field results for showing the singular electric-field
characteristic at the dielectric corners.

Fig. 6. Field profiles for (a) , (b) , and (c) , respectively, for the
case of Fig. 5(b).

are two values for each since the tangential component
value referring to the left side and that referring to the right side
are different. Also displayed in Fig. 5(c) are the corresponding
profiles for the magnitudes of the total electric field, , which
show sharper singular behavior. The subdomain division profile
near the square cylinder is plotted in Fig. 2(d).

Fig. 7. and field distributions for plane-wave scattering by two cou-
pled silver circular cylinders. The plane wave is incident from left in (a) and
(b), and from bottom in (c) and (d). The radii are 50 nm and the side spacing
between the two cylinders is 10 nm.

C. Two Coupled Circular Metallic Cylinders

The field coupling between metallic nanoparticles plays an
important role in plasmonic research, which in particular may
result in strong local-field enhancement that can provide many
useful applications. We apply the PSFD method to study the
phenomenon of field coupling between two silver nano-cylin-
ders, with focus on two closely placed cylinders interacting with
incident light waves of different directions and polarizations.
The first case is a system of two 50-nm-radius circular cylin-

ders with 10-nm spacing allocated along the -axis. For the
and distribution results shown in Fig. 7(a) and (b), the wave
is incident from left at m and with polarization.
The measured complex dielectric constant of silver at this wave-
length is . The two cylinders are coupled such
that strong electric field enhancement occurs within the gap be-
tween them, with the maximum being about 6.42 times the
incident electric field intensity, as indicated in the color bar in
Fig. 7(a). Due to the direction of the incident wave, the elec-
tric field profile is longitudinally symmetric with respect to the
arrangement of cylinders. There is a null at the center, and the
fields below and above it are oppositely signed in phase. Also,
the incident polarization causes the first cylinder to oscillate
with strong fields on both -ended surfaces, as depicted in
Fig. 7(b), and less influence is on the second cylinder due to the
shielding from the first cylinder.
If the propagation direction of the incident wave is changed

to be bottom-up with polarization, strong field enhancement
occurs at m with the and field distribu-
tions shown in Fig. 7(c) and (d), respectively. At this wave-
length, the measured complex dielectric constant of silver is
about . In this case, obviously, the incident
field leads the free electrons in both cylinders to oscillate hori-
zontally and induces a strongly coupled field within the gap,
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Fig. 8. and field distributions for plane-wave scattering by two cou-
pled silver rectangular cylinders. The plane wave is incident from left in (a) and
(b), and from bottom in (c) and (d). The edge length are 100 nm and the side
spacing between the two cylinders is 10 nm.

which is about 9.14 times enhancement. Note that the maximum
induced field is not exactly located right at the center, but
about 5 nm upper. The induced field is transversely sym-
metric and not strongly enhanced, and the phases of the
two cylinders are reversed such that there also exists a null in
between. It is seen in the above two situations that the plane
wave incident from the bottom provides higher field enhance-
ment than that from the left.

D. Two Coupled Square Metallic Cylinders

Next, we study the field coupling between two squaremetallic
cylinders. Different from the circular ones, the square cylin-
ders have four sharp corners, which would cause singular points
and thus induce extremely, infinity theoretically, strong fields
would exist around these apexes, causing challenges in numer-
ical computations.
The simulated case is a system of two square cylinders, each

having 100-nm edge width, again with 10-nm spacing. This
structure is to be compared with the above one of circular cylin-
ders. Fig. 8(a) and (b) shows the and distributions
when the wave is incident from left at m. The
complex dielectric constant of silver at this wavelength is about

. From the field shown in Fig. 8(a), it re-
veals two spots of field enhancement at the upper and lower
corners in the gap, with the field enhancement being as high
as up to 30 times. The calculated fields at the apexes would be
even higher as is increased. As in the case of coupled circular
cylinders, the profile is distributed mainly at both -ended
edges of the first cylinder. The appearance of symmetric upper
and lower field-enhancement regions is quite similar to those in
Fig. 7(a) and (b).

Fig. 9. and field distributions for plane-wave scattering by two cou-
pled silver circular cylinders having a dielectric coating of 10-nm thickness. The
plane wave is incident from left in (a) and (b), and from bottom in (c) and (d).

Likewise, if we change the incident wave direction to
bottom-up at m, the strong enhancement
appears in the gap near the bottom corner, as shown in Fig. 8(c),
due to the -polarized incident field, with the enhancement
being up to 12 times, which is smaller than that in Fig. 8(a).
The complex dielectric constant of silver at this wavelength
is . Note that the field is now not enhanced
at the center but near the bottom of the gap. Opposite field
phases in Fig. 8(a) with respect to horizontal symmetric plane
and in Fig. 8(d) with respect to the vertical symmetric plane in
Fig. 8(d) cause obvious null-field appearances within the gap
region.

E. Two Coupled Metallic Cylinders With Dielectric Coating

We further study the situations with each of the cylinders in
Figs. 7 and 8 coated with a 10-nm-thickness dielectric layer of
dielectric constant . We maintain the diameter or edge
width of each silver cylinder, and the gap size is still kept as
10 nm. It is known that this outer dielectric material can make
the plasmonic resonant frequency shifted, but the optical field
characteristics are rarely seen, especially for coupled cylinders.
The results corresponding to Fig. 7 are shown in Fig. 9 and those
corresponding to Fig. 8 are shown in Fig. 10. The incident wave-
lengths in Fig. 9(a)–(b), Fig. 9(c)–(d), and Fig. 10(a)–(b), and
Fig. 10(c)–(d) are 0.467, 0.417, 0.649, and 0.616 m, respec-
tively, with the corresponding complex dielectric constants of

, and
, respectively. The characteristics of and pro-

files are seen to be quite similar with those in Figs. 7 and 8, but
the localized fields now appear mainly at the dielectric-dielec-
tric interfaces and in the gaps, which could reduce the ohmic
losses in the metals. The field enhancement is found to be lower
compared with uncoated cases, which can be explained by the
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Fig. 10. and field distributions for plane-wave scattering by two cou-
pled silver rectangular cylinders having a dielectric coating of 10-nm thickness.
The plane wave is incident from left to right in (a) and (b) and from bottom in
(c) and (d).

fact that the actual distance between the metallic cylinders is
30 nm rather than 10 nm.

F. Three Pairs of Circular Metallic Cylinders

We finally investigate two-by-three arranged six-silver-
cylinder arrays studied in [10], where the FDTD method was
used for simulations. This cylinder arrangement is shown
to give not only particle-particle but pair-pair interactions,
thus strong localized field enhancement could be generated
in the gap of the middle pair [10]. In [10], measured material
characteristics for silver given in [35] instead of [34] were
used. We also adopt the data in [35] in our calculations for
comparison. Our PSFD results given in Fig. 11 are for the
incident wave from left to right and the spacing between ad-
jacent cylinders being 20 nm. In [10], it was found that with
gap size of 20 nm and at nm, the maximum field
enhancement of about 8.89 occurs when the cylinder radius is
36 nm. Our PSFD simulated profile for this case is shown
in Fig. 11(a), where the maximum field value is 11.11 V/m,
referring to the incident field of 1 V/m, and the field value at
the center of the gap of the middle pair is about 9.33 V/m,
which is larger than that value of [10] by 4.72%. The value
is defined here by . The measured
complex dielectric constant of silver given in [35] is about

at this wavelength. If the value given
in [34], , is used, the PSFD calculated
maximum field value and the field value at the center of the
gap of the middle pair would be about 13.78 and 11.65 V/m,
respectively.
When the wavelength is changed to 650 nm, the cylinder ra-

dius was found in [10] to be 58 nm for generating largest field
enhancement of 13.04. Our results for this case are presented

Fig. 11. field distributions for plane-wave scattering by six silver circular
cylinders with incident wave from left. (a) Cylinder radius nm at
460 nm. (b) Cylinder radius 58 nm at nm. All gap widths are
20 nm.

in Fig. 11(b), where the maximum field is 15.54 V/m and
the field value at the same gap center is about 14.09 V/m, again
larger than those values of [10] by 8.05%. The complex dielec-
tric constant of silver cylinder is about
from [35] for this incident wavelength. Again, if we choose
to adopt the measured parameter from [34], which is

, the PSFD calculated maximum field
value and the field value at the center of the gap of the middle
pair would be about 17.07 V/m and 15.51 V/m, respectively.

V. SOME REMARKS ON THE PROPOSED
FORMULATION AND SCHEME

The proposed pseudospectral formulation and scheme in this
paper have been based on the Legendre collocation points, the
first-order Maxwell’s equations, and the penalty scheme for in-
terface conditions, which are in contrast to some existing ones
based on the Chebyshev collocation points, the second-order
Helmholtz equations, and/or directly matching interface condi-
tions. The advantages of our ones are discussed in the following.

A. Legendre Collocation Points Versus Chebyshev
Collocation Points

A major factor, which makes the Chebyshev pseudospectral
approximations based on the Chebyshev–Gauss–Lobatto points
more popular than the Legendre pseudospectral approximations
based on the Legendre–Gauss–Lobatto points, is the fast fourier
transform (FFT). This technique allows the numerical deriva-
tives to be computed in operations. Indeed, Cheby-
shev pseudospectral method is very attractive for problems de-
fined on regular domains, based on single domain computational
framework. For these problems, either time-dependent or time-
independent, if the required number of grid points is beyond
100, then the FFT technique does improve the computational ef-
ficiency. However, in a multidomain computational framework
which can be used to solve problems defined on complicated
domains, the number of grid points in each subdomain is gen-
erally much less than 100 and thus, we do not gain efficiency
on using Chebyshev pseudospectral method [38]. Of course this
does not mean we need to use Legendre pseudospectral method
instead. The reason of using Legendre pseudospectral approx-
imation will be discussed after addressing issues related to the
penalty methodology of imposing boundary conditions.
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B. Penalty Method for Interface Conditions and Directly
Matching Interface Conditions

We now address issues related to the approaches of imposing
boundary conditions. Generally speaking, an interface boundary
condition is a constraint relating field values on both sides of
the interface in a specific way, possibly involving differentia-
tions and geometrical parameters. In the present study, the ge-
ometrical parameter is the unit vector normal to the interface.
In a multidomain computational framework, a problem domain
is decomposed into a union of subdomains. Thus, at the sub-
domain interfaces we need to enforce interface boundary con-
ditions. As a consequence, it is necessary to specify a unique
normal vector at every boundary grid point, and this becomes a
problem at a vertex point of a 2-D subdomain. Is it possible to
assign a unique normal vector at a vertex point? Or does it exist
a unique normal vector at a vertex point? Frankly speaking, we
have no answer to the problem and we doubt that there is an
answer to the problem. Thus, this becomes a problem when we
want to impose boundary condition through a directly matching
approach at a location shared by vertex points of different sub-
domains, and great care must be exercised to resolve this issue.
In contrast, the penalty methodology offers an edge-by-edge ap-
proach to impose boundary conditions [23], [39], [40]. It is not
necessary to specify a unique normal vector at a vertex point,
because a vertex point is an intersection of two boundary edges
of a subdomain. Since we can specify normal vector functions
along the edges of a subdomain, we define two normal vec-
tors at a vertex point based on the normal vectors on the edges
that intersect at the vertex. As a result, every vertex point is en-
forced with two penalty boundary conditions with field values
from two attached edges belonging to different subdomains.
This does not ruin the consistency (accuracy) of the scheme at
all. As we have shown in our numerical experiments, the results
are exponentially convergent. This explains why we adopt the
penalty methodology for imposing boundary conditions.

C. Why the Legendre Pseudospectral Method?

The penalty method incorporates numerical partial differ-
ential equations and boundary conditions through a linear
combination parameterized by a penalty parameter [23],
[39]–[41]. The value of this parameter is commonly determined
such that the scheme is stable in an energy sense. To conduct
such an analysis, one needs to establish a discrete energy
norm measurement. This issue makes Legendre pseudospec-
tral method very attractive, because Legendre pseudospectral
method is equipped with a quadrature integration rule (Le-
gendre–Gauss–Lobatto quadrature rule) which can be used to
construct a discrete norm measurement for grid-functions
[42]. The Chebyshev pseudospectral method also has a quadra-
ture integration rule [42]. However, the rule does not coincide
with the usual energy norm measurements for functions.
Using the Legendre–Gauss–Lobatto quadrature rule to conduct
an energy estimate, one can determine the value of the penalty
parameter to ensure the stability of a scheme in a theoretical
basis, instead of a trial-and-error basis. This procedure is useful
and important, because high-order accurate numerical methods,
compared to the low-order accurate ones, are very sensitive to
the impositions of boundary conditions [42], [43]. For time-de-
pendent problems, if boundary conditions are not imposed

properly, it often causes numerical blow-up solutions because
of numerical instability inducing from subdomain boundaries.
For time-independent or time-harmonic problems, improper
impositions of boundary conditions may cause non-convergent
solutions during iteration processes. Roughly speaking, these
instabilities and nonconvergence problems are often resulting
from numerical solution operators being unstable, in the sense
that some eigenvalues of the solution operators have posi-
tive real part, commonly due to the impositions of boundary
conditions. To avoid these unwanted situations, constructing
a energy stable scheme in the theoretical stage becomes
important in building a multidomain computational framework
for simulations. Thus, based on the above arguments we adopt
the Legendre pseudospectral method instead of the Chebyshev
pseudospectral methods.

D. Why First-Order Maxwell’s Equations Instead of
Second-Order Helmholtz Equations?

In the present study, we solve first-order system Maxwell’s
equations instead of the equivalent second-order Helmholtz
equations. This approach, indeed, is a drawback of the present
formulation because it requires to solve more equations. In 2-D
space, three coupled first-order partial differential equations
need to be solved but only one equation to be solved if the
problem is described by the second-order Helmholtz equation.
However, the present first-order system formulation can be
directly extended for waves in anisotropic media, even possibly
with permittivity or permeability of media being a tensor. It is
because the material parameters are not associated with the curl
operator parts [23], [40]. Thus, we do not need to reformulate
the penalty boundary condition formulations. As mentioned
earlier, the penalty type boundary formulations avoid the ambi-
guity of specifying normal vectors at subdomain vertex points
and this simplifies the imposing of interface boundary condi-
tions. Of course, it would be even more attractive to construct
pseudospectral penalty schemes for Helmholtz equations di-
rectly. A possible way is first identifying well-posed boundary
operators for vectorial second-order wave equations which are
the time-domain representation of Helmholtz equations. Once
the well-posed operators for the second-order wave equations
are identified, a pseudospectral penalty scheme may be for-
mulated for the second-order wave equations. We can then
easily convert the time-domain scheme to frequency-domain
equations, which becomes a pseudospectral penalty scheme for
the equivalent Helmholtz equations. We are putting our effort
on this subject and hope to report the results in the future.

VI. CONCLUSION

A multidomain PSFD method has been developed based on
the Legendre polynomials and a penalty scheme for solving
Maxwell’s equations. The application is particularly aimed at
electromagnetic wave scattering problems in plasmonics with
the goal of obtaining high-accuracy near fields. Calculation of
light scattering by a silver circular cylinder has demonstrated
that this PSFD method indeed provides high-order accuracy
with the obtained field error down to referring to 1-V/m
incident electric field strength, thanks to the spectral conver-
gence property of the spectral method and the accurate fulfill-
ment of the field continuity conditions across the material inter-
faces provided by the multidomain approach as well as global
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interpolation by Legendre polynomials. In the multidomain ap-
proach, the whole computational domain is properly partitioned
into curvilinear subdomains fitting the generally curved mate-
rial-interface shapes.With this demonstrated extremely high nu-
merical accuracy, the formulated method should be useful for
plasmonics research and can provide reliable results for the cal-
culation of field enhancement near metal surface, as shown in
the numerical examples including coupled plasmonic cylinders
of either circular or square shape. Our analysis results also pro-
vide a good reference for other numerical methods to compare
with. Moreover, the frequency-domain approach has the advan-
tage of directly using a given complex dielectric constant of the
material in the calculation with no need of implementing a dis-
persive material model like in the time-domain approach.
A final remark goes to the possible singular-field behavior

when the material interface is non-smooth such as in the
square-shaped-cylinder cases, as was discussed in connection
with Fig. 5. Although the spectral convergence property of
the PSFD method has been demonstrated when simulating
round cylinders, when interface corners appear, numerical
convergence would unavoidably be degraded. In Fig. 5(c), it
was demonstrated that, although only one subdomain is em-
ployed for the square-cylinder cross-section, the singular-field
characteristic evolves as the degree in the PSFD calculation
is increased so that the grid size near the dielectric corner
shrinks. Related treatment of such singularities based on the
finite element method has been reported through using al-
gebraically graded grids near the corner where a singularity
exists [38]–[40]. Further treatment and more detailed study
about the corner singularities using the PSFD method, such as
with refined arrangement of subdomains, would worth being
pursued as a more basic topic.
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Abstract—We propose a pseudospectral mode solver for optical
waveguide mode analysis formulated by the frequency-domain
Maxwell equations. Special attention is paid upon identifying
the required boundary operator for the formulation and the
relationships between the derived operator and the physical
boundary conditions. These theoretical results are adopted into a
Legendre pseudospectral multidomain computational framework
to compute the propagation characteristics of optical waveguides.
Numerical experiments are conducted, and the expected spectral
convergence of the scheme is observed for smooth problems and
for problems having field jumps at material interfaces. For dielec-
tric waveguides with sharp corners, the spectral convergence is
lost due to the singular nature of fields at the corner. Nevertheless,
compared with other methods, the present formulation remains
as an efficient approach to obtain waveguide modes.

Index Terms—Frequency-domain Maxwell’s equations, op-
tical waveguides, penalty boundary conditions, pseudospectral
methods, waveguide analysis.

I. INTRODUCTION

I N modal analysis for optical waveguides, the propagation
constants and the associated field distributions of guided

modes provide useful information in designing and operating
optical guiding devices such as filters, switches, modulators,
and fibers. To obtain these guiding characteristics, one needs
to solve either Maxwell’s equations or the vectorial Helmholtz
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equations, subject to boundary conditions. However, due to the
involved mathematical difficulties raised from either the geom-
etry configurations of devices or the heterogeneous distribu-
tions of material properties, waveguide problems are in general
very hard to solve analytically. For realistic cases, numerical
methods are employed to obtain the guiding characteristics.
Among numerical methods, Cartesian finite difference

methods [1]–[6] are popular for waveguide problems if the
geometry of the guiding structure is confined to the grid lines.
However, for problems involving curved interfaces, special dif-
ference stencils are required to treat field values in the vicinity
of curved interfaces to maintain accurate computations [7]–[9].
Also commonly used in modal analysis, body-fitted finite
element methods [10]–[13] adopt unstructured and structural
meshes to fit the geometries and employ edge elements and
tangential elements to discretize the equations and boundary
conditions. Most of the aforementioned methods are low-order
accurate methods, typically first or second order. As the com-
plexity of waveguide problems increases, these finite difference
and finite element schemes require using dense meshes to
perform accurate computations. Hence, these approaches lead
to large systems of equations to be solved, which may consume
lots of computational resources and time. An approach for
overcoming this issue is designing high-order accurate schemes
based on spectral/pseudospectral methods [14]–[17]. Gener-
ally, these schemes can compute accurate results by using a
coarse mesh, compared to low-order methods. However, this
advantage does not come along freely, and great care must be
exercised to ensure the high-order convergence rate, because
these methods are very sensitive to the smoothness of the
solutions and the imposition of boundary conditions [18].
In this study, we present a high-order accurate and geomet-

rically flexible computational approach for waveguide mode
analysis. Unlike the mentioned pseudospectral approaches that
adopt the vectorial Helmholtz equations as the main equations,
we consider the frequency-domain Maxwell’s equations as the
governing equations. Special attention is paid upon analyzing
the required boundary operator for the frequency-domain
Maxwell’s equations and its relationships with the common
physical boundary conditions. These analytic results are then
adopted into a multidomain pseudospectral computational
framework through the penalty methodology [19]–[22]. The
proposed formulation is validated through computing the
propagation characteristics of fundamental modes of a number
of waveguide structures. We observe the expected spectral
convergence results for smooth waveguide problems and for
problems having finite jumps of fields at material interfaces.
However, for dielectric waveguides having sharp corners, it is
found that the spectral convergence is lost, due to the singular

0733-8724/$31.00 © 2012 IEEE
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nature of optical fields at the corner. Nevertheless, the results
show that the present scheme remains competitive compared to
other finite difference approaches on solving the same problem.
Preliminary results of this study were reported in [23]. In
this paper, we give the detailed formulation with numerous
numerical examples.
The rest of this paper is organized as follows. In Section II,

we present the mathematical formulation of the concerned prob-
lems and seek the required boundary operator as well as its re-
lationships with common physical boundary conditions to com-
plete the formulation. Section III is devoted to the construction
of the discrete scheme of the formulation based on the multido-
main pseudospectral penalty approach. The validation of the
proposed formulation is presented in Section IV. Concluding
remarks are given in Section V.

II. MATHEMATICAL FORMULATION

A. Maxwell’s Equations

The Maxwell equations for optical fields in linear, lossless,
source-free, and nonmagnetic medium are

(1a)

(1b)

(1c)

(1d)

where , and are the
permittivity, permeability, impedance, and speed of light in free
space, respectively, assumed real constant is the relative per-
mittivity of medium, and are the electric and magnetic
fields, respectively, and denotes the partial differential oper-
ator with respective to .
Let the axis be the propagation direction. To solve the trans-

verse wave fields in waveguides, we assume the fields having
the space-time dependence of the form

(2)

where and are the normalized complex-valued
phasors of and , respectively, is the propagation con-
stant, and is the angular frequency. Substitution of (2) into (1)
leads to the phasor component equations

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

where is the space wavenumber in vacuum. Notice
that (3g)–(3h) can be derived from (3a)–(3e). We have six inde-
pendent equations governing the six field variables formulated
as an eigensystem, with and the phasor fields being the eigen-
value and eigenvectors, respectively.

Fig. 1. Schematic view of the cross section of a waveguide.

B. Boundary Operators

Consider the waveguide having a cross section as depicted
in Fig. 1. The structure is closed by perfect magnetic conductor
(PMC) and perfect electric conductor (PEC) at the outer and
inner surfaces, and , respectively. Within the structure,
the surface divides the guiding area into two regions and
, characterized by the permittivity and permeability of the

material, and , respectively. and denote
the outward pointing unit vectors normal to the surfaces and

, respectively, and and are unit vectors normal to the
surface pointing from region to region and from region
to region , respectively.
To seek the boundary operator required by (3a)–(3e), we

rewrite these equations in the matrix form

(4)

where is the state vector
with denoting the vector transpose, and for

with being the Kronecker delta function. Multiplying (4)
by from the left, where denotes the Hermitian of the
variable , and multiplying the Hermitian of (4) by from
the right, integrating the entire domain , summing the
resultants, and invoking the divergence theorem to change the
volume integrals to surface integrals, we obtain

(5)

where with being the
outward pointing unit vector normal to a domain boundary, and

denotes the integration along the path . Note that the
second and the third integrations on the right-hand side (RHS)
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of (5) are evaluated with variables defined on the interface
but in regions and , respectively.
To proceed further, we introduce the characteristic variables

at the boundaries. Since , there exists a unitary
matrix such that

with , and . Notice
that because is real. Employing , we
define the characteristic state vector

The explicit expressions of and are

(6)

(7)

where is the unit vector in the -direction, is the
transverse electric (magnetic) field, and is the electric
(magnetic) field perpendicular to the plane.
Equation (5) implies that the required boundary conditions

must lead to the vanishing of the RHS of the equation. We now
examine whether the specified boundary conditions satisfy this
constrain.

a) PMC Condition at : The conditions are

It follows from (7), and , that

(8a)

(8b)

Thus, and .
Furthermore, since , we obtain

indicating that in (5).
b) PEC at : The conditions are

It follows from (7), and , that

(9a)

(9b)

Thus, and .
Since , we obtain

indicating that in (5).
c) Material Interface Condition at : The interface

boundary conditions relating fields on both sides of the inter-
face are

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

where is the unit vector normal to pointing from region
to region , and the superscripts and denote the re-

gions where the field variables are defined on the interface,
respectively. From (7), we have

Invoking (10b) and (10c) as well as , we yield

(11)

Following similar procedures, we obtain the conditions

(12)

(13)

(14)

It follows from these expressions and that

Therefore, .
The analysis shows that to satisfy (5), we need to specify

, and on the boundary to complete the system. The
explicit expressions of these characteristic components and their
relationships with the common physical boundary conditions
are established. In the next section, we shall apply these result
and construct a pseudospectral penalty scheme for solving wave
fields in waveguides.

III. NUMERICAL FORMULATION

A. Legendre Pseudospectral Method

Let and be a positive integer. Introduce the
Legendre–Gauss–Lobatto (LGL) points for .
These points are roots of the polynomial where

is the th degree Legendre polynomial and denotes
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Fig. 2. Coordinate mapping of a square in coordinate and a general curvilinear quadrilateral in coordinate.

the differentiation. To approximate a function defined on ,
we seek a polynomial of the form

where and are the Lagrange interpolating func-
tions. The 1-D pseudospectral method can be extended to a 2-D
framework through the tensor product formulation. Let and
be positive integers. Denote and term the coor-

dinates . Consider the grid points for and
for , where and are the LGL grid points along
the - and -axis, respectively. Then, the grid points are defined
as . To approximate defined on , we construct
a polynomial of the form

where and are the 1-D Lagrange interpolating func-
tions based on the grid points and , respectively. The partial
derivatives of are approximated as

We have reviewed some basic concepts related to the Legendre
pseudospectral method. For further details on the method, we
refer the reader to [18].

B. Equations in Curvilinear Coordinates

The tensor-product-based pseudospectral formulation is for
problems defined on standard domain . To apply the

formulation for problems defined on general complex domains,
an approach is decomposing the global domains into unions of
smooth quadrilateral subdomains which can be mapped onto
a standard domain. We understand that establishing a general
coordinate transformation for mapping an arbitrary quadrilat-
eral domain onto a square domain may not be always possible.
Hence, we describe the methodology for problems defined on
a curvilinear quadrilateral element that can be mapped onto a
square.
Consider a general curvilinear quadrilateral and a square
defined in coordinate systems termed and , re-

spectively (see Fig. 2). We apply the transfinite blending in-
terpolation method [24] and construct a coordinate mapping

and its inverse to establish
a one-to-one correspondence between and . The transforma-
tion metric functions are then computed as

and they are related as
where is the identity matrix. Using the

coordinate transformation and the chain rule of differentiation,
we rewrite (4) as

(15)

where
, and .

Denote as the unit vector normal to the boundary
of in the coordinate system. On the boundary of ,
we define the variables and , related by

, and
. The variables , and and their transformed corre-

spondences , and defined on the boundary of are related
as follows. Denote the unit vectors along the - and -axes by

and , respectively. On the edges
, we have and

. Replacing the symbol by in the
aforementioned expressions, we obtain the corresponding rela-
tionships for the variables defined on .
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C. Numerical Scheme

We now present the numerical scheme for solving (15). Let
denote the numerical state vectors at the grid points

satisfying the collocation schemes

(16)

where

(17a)

(17b)

(17c)

(17d)

with and being the quadrature weights [18] associated
with the grid points and , respectively. It is shown in
(16) that the boundary conditions are enforced into the scheme
weakly through the characteristic variables.
To complete the construction of the scheme, we need to pro-

vide the explicit expression of . For simplicity, we consider
the imposition of boundary conditions on the edge as
an example. To impose PMC condition, it is suggested from
(8a) and (8b) to construct
leading to

where . Likewise, to enforce PEC con-
dition, it is suggested from (9a) and (9b) to construct

. Thus,

where . We now discuss the imposition of inter-
face boundary condition. From (11)–(14), it is suggested to take

. Hence,

where and similarly for the other parallel
notations.
By employing (16) and the aforementioned boundary rela-

tionship, the wave fields on the transverse plane of a wave-
guide can be formulated as an eigenvalue problem of the form

,where the propagation constant is the eigenvalue,
is the eigenvector composed of the collocated state vectors,

and is a matrix. Solving the eigensystem, we obtain and the
transverse wave fields.

IV. NUMERICAL VALIDATIONS AND DISCUSSION

A. Errors of Effective Index and Residual Functions

We examine the performance of the method by measuring the
error of the computed effective index defined as

where and are the exact and the computed effective in-
dexes and is the operating wavelength. To measure how well
the computed eigenmode solutions are, we employ the expres-
sions in (3g) and (3h), which are omitted in computations, and
define the residual functions and as

where the integrals are evaluated numerically by the LGL in-
tegration quadrature rule [18]. The residual functions can be
served as accuracy indicators of the numerical eigenmode solu-
tion because if the computed fields are obtained by the scheme
convergence to the exact fields of (3a)–(3h), then the residual
functions shall decay as the mesh is refined.
The convergence rate of the computed effective index is cal-

culated as

where and are the characterized degrees of the approx-
imation polynomials during mesh refinement. Replacing
in the aforementioned expression by and , we compute
the convergence rates of the residual functions and ,
respectively.

B. Partially Filled Metallic Waveguide

Consider a half-filled metallic waveguide structure with the
geometry and the refractive indexes shown in Fig. 3. The ef-
fective index of the fundamental longitudinal-section electric
(LSE ) mode at the operating wavelength m is
solved by the present method with a computational mesh shown
in Fig. 3.
A grid convergence study is given in Table I. We see that the

error of the effective index decays exponentially as the mesh
is refined. The convergence study illustrates the efficiency of
the proposed formulation in computing accurate solutions. It is
observed that the computed effective index has reachedmachine
accuracy level even using coarse grid meshes. In addition, it
is also shown that the residual vanishes as the polynomial
degree increases. The values of are at machine accuracy
level for different values of , because the , and
fields are zero for this particular mode.

C. Circular Metallic Waveguide

Consider an air-filled circular metallic waveguide with the
geometry and the refractive indexes shown in Fig. 4. The effec-
tive index for the fundamental transverse electric (TE ) mode
at the operating wavelength m is solved by the
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Fig. 3. Schematic view of (left) a partially filled metallic waveguide and (right) a multidomain computational mesh composed of two subdomains. Each subdomain
contains grid points, where is the degree of the approximation polynomial.

Fig. 4. (Left) Schematic diagram of a circular metallic waveguide. (Right) Multidomain mesh composed of three subdomains.

TABLE I
CONVERGENCE STUDY OF THE PARTIALLY FILLED METALLIC WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX FOR THE LSE
MODE AT THE OPERATING WAVELENGTH M OBTAINED BY

SOLVING TRANSCENDENTAL EQUATIONS [25]

present method. Due to the geometrical symmetry, we only need
to solve the problem on the upper right quarter fan region sup-
ported by the PEC and PMC conditions at the two straight edges.
A grid convergence study is given in Table II.We observe that

the error of the computed effective index and the residuals
and vanish rapidly to machine accuracy level, as increases.
The results indicate that the present formulations incorporated
with the transfinite blending mapping also perform very well for
solving problems involving curved boundary.

TABLE II
CONVERGENCE STUDY OF THE CIRCULAR METALLIC WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX FOR THE
TE MODE AT THE OPERATING WAVELENGTH M

D. Fiber Waveguide

Consider a fiber waveguide with the geometry and the re-
fractive indicies as shown in Fig. 5. We use the present method
to solve the effective index for the fundamental HE mode of
the fiber waveguide at the operating wavelength m.
Notice that this problem has a high index difference between
the core and the surrounding areas, which causes fields having
jumps at the dielectric interface. Thus, this problem is suitable
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Fig. 5. Schematic view of (left) a fiber waveguide and (right) a multidomain mesh.

for validating the numerical boundary impositions of the present
formulation.
Notice that the problem domain radially extends to infinity,

which cannot be directly solved by the present formulation for
problems defined on finite regions. However, since the fields in
the air region are of evanescent type, the amplitude of each field
vanishes in the far zone. Employing this property, we termi-
nate the domain by a virtual boundary and enforce PEC or PMC
condition at the artificial closure. As will be shown soon, such
an arrangement does not harm the computation accuracy pro-
vided that the artificial boundary is far away from the fiber core.
Furthermore, since the problem domain possesses circular sym-
metry, it is sufficient enough to consider the problem defined on
the upper right quarter of the waveguide cross section. We use
a mesh composed of seven subdomains as shown in Fig. 5.
A grid convergence study is provided in Table III. It is shown

that the errors of the computed effective index and the residual
functions and all vanish exponentially as the mesh is re-
fined. We also obtain when using

, which gives a less than . The computed
fields of the fundamental HE mode with are shown in
Fig. 6.We observe that the field components are mostly confined
in the guiding core area and in the vicinity of the dielectric inter-
face, and the amplitude of each field component decays to zero
away from the core area. We observe the field jumps at the cir-
cular dielectric interface, indicating that the proposed boundary
formulation does well capture the essential character of fields at
the material interface.

E. Channel Waveguide With Sharp Corners

We now examine the performance of the formulation on
solving propagation characteristics of a square channel wave-
guide with the geometry and the refractive indexes shown in
Fig. 7. A special feature of the considered dielectric channel
waveguide is that the electric fields at the dielectric sharp
corners are singular (see [5] and the references therein). There,
an analysis was conducted to compute the propagation char-
acteristics involving the singular behavior of fields at sharp

corners and the result obtained by the difference method is
adopted here as a reference.
A grid convergence study is provided in Table IV.We observe

that the residual functions and only decay in three-quarter
rate at most and a second-order rate, respectively, as the compu-
tational mesh is refined. The spectral converge rate is ruined due
to the weakly divergent behavior of the and field com-
ponents at the sharp corner [5], [13], which indeed has a great
impact on the convergence of the scheme. In our computation,
it is found that the local residual
at the corner does not decay. This ill behavior, thus, leads to a
very poor convergence of the residual . On the other hand, it is
found that the local residual
at the corner decays in the first-order rate. As a consequence, the
residual function vanishes in a second-order rate.
Although the spectral convergence of the scheme is lost for

this problem, it is shown that the effective index obtained by
the present method still agrees well with the referenced one. In
fact, from the computed results, we observe that by employing
a coarse grid mesh (four subdomains with 7 7 grid points
in each subdomain), it is sufficient enough to compute the ef-
fective index having a similar accuracy as the referenced one
obtained by a 150 150 finite difference grid mesh. This ad-
vantage allows one to compute more accurate results by in-
creasing the resolution of the grid mesh. We close this sec-
tion by providing more accurate results of the effective index
of the channel waveguide for in Table V and for

in Table VI. It is shown that the effective indexes are
approximately 1.276274037 for and approximately
2.656796923 for . These values are consistent with those
obtained by a recently developed waveguide mode solver based
on Neumann-to-Dirichlet operators and boundary integral equa-
tions [26], in which an accuracy comparison has beenmade with
the result in [23].

V. CONCLUDING REMARKS

We have presented a pseudospectral computational frame-
work for computing the propagation characteristics of optical
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Fig. 6. Field amplitude contour line plots of the fiber waveguide problem. , and are placed on the top row from left to right. , and
are placed on the bottom row from left to right.

TABLE III
CONVERGENCE STUDY OF THE FIBER WAVEGUIDE.

, REFERENCED EFFECTIVE INDEX OF THE HE
FUNDAMENTAL MODE AT THE OPERATING WAVELENGTH M

wave fields in waveguides. The mathematical formulation is
based on the Maxwell equations in frequency domain, and the
required boundary operator to complete the formulation was
identified. Relationships between the mathematically derived
boundary operator and the common boundary conditions were
also established. We constructed a multidomain Legendre pseu-
dospectral scheme with boundary condition weakly imposed
through the penalty methodology. Numerical experiments were
conducted and we observed the expected spectral convergence
of the scheme for both smooth problems and those having finite
jump discontinuities at material interfaces. However, for prob-
lems involving singular wave fields occurring at sharp dielec-
tric corners, the numerical experiments showed that the spectral
convergence of the scheme is ruined and the order of the conver-
gence is at most first-order accurate in the global sense. Never-
theless, the present pseudospectral method remains an efficient

approach to compute the results compared to those obtained by
finite difference methods [5].
For waveguide analysis, a common approach is solving full-

vectorial wave equations in terms of the two transverse mag-
netic field components. The total number of discrete equations
raised by the transverse field formulations is less than that raised
by the present six-component formulation. We admit that the
present method requires more computational work. To over-
come this issue, we have reformulated our method to reduce the
number of equations. The idea is mimicking the procedure of
obtaining the full-vectorial wave equations from the Maxwell
equations, which involves taking the partial derivatives of the
first-order system of equations and then conducting algebraic
eliminations to yield decoupled second-order wave equations.
For the present method, we can write (16) and (17) into their
continuous representations, and then take derivatives and con-
duct algebraic eliminations to obtain a system of second-order
equations composed of the transverse magnetic field compo-
nents and the nontransverse electric field component. Thus, the
total number of discrete equations is reduced and the computa-
tional work can be reduced. To completely eliminate the non-
transverse electric field requires further investigation. The de-
tails of this study will be further conducted and presented else-
where in the future.
Although the present formulation results into a larger system

compared to the transverse magnetic field components ap-
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Fig. 7. Cross-sectional view of (left) a dielectric waveguide and (right) a computational mesh composed of four subdomains.

TABLE IV
GRID CONVERGENCE STUDY OF THE CHANNEL WAVEGUIDE. , REFERENCE EFFECTIVE

INDEX FOR THE FUNDAMENTAL MODE AT THE OPERATING WAVELENGTH M ADOPTED FROM [5]

TABLE V
EFFECTIVE INDEX OF THE FUNDAMENTALMODE OF THE CHANNELWAVEGUIDE
COMPUTED BY THE SCHEME WITH VERY DENSE MESHES WITH .

OPERATING WAVELENGTH M

TABLE VI
EFFECTIVE INDEX OF THE FUNDAMENTAL MODE OF THE CHANNEL
WAVEGUIDE COMPUTED BY THE SCHEME WITH VERY DENSE MESHES

WITH . OPERATING WAVELENGTH M

proach, the present method may have a possible advantage
on solving problems involving tensor permittivity. For this
situation, the full-vectorial formulation may involve cross
differentiation terms, which may become complicated for im-
posing boundary conditions. However, in the present method,
tensor permittivity will only affect the matrix which is
a low-order term in (4). Consequently, the present boundary
formulation, which is related to the and matrices, may

remain valid. Detail investigations will be explored in the
future.
Before the end of this paper, we briefly discuss two issues re-

lated to the further development of the present method. The first
one regards computing waves propagating toward to far fields
along the transverse plane. In this study, we only conduct exper-
iments either for wave problems defined on closed domain or for
problems where the waves are evanescent in the far field, so the
domain can be terminated into a finite region supported by ar-
tificial boundary conditions. Because of the lack of methods on
absorbing waves propagating toward to far zone for the present
formulation, the performance of the scheme on solving leaky
mode solutions of certain optical waveguide structures has not
yet been examined. Hence, to extend the applicability of the
present method for calculating leaky modes of waveguides, it
is worth to develop suitable perfectly matched layer methods to
absorb outgoing waves andmaintain the solution accuracy in the
guiding regions. The second issue regards the blow-up behavior
of wave fields at dielectric corners. Although the present formu-
lation remains a competitive approach, compared to other finite
difference methods, for computing the propagation characteris-
tics of waveguides involving dielectric corners, the singular na-
ture does ruin the exponential convergence order of the scheme.
It would be interesting to develop methods to enhance the con-
vergence order, so the computations can be more efficient and
accurate to resolve the singular behavior of fields at dielectric
corners. We hope to report this development in the future.
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1. Introduction

Many physics problems require solving Poisson’s equation. For problems defined on domains which are confined with the
coordinate systems, there are fast and accurate Poisson and Helmholtz direct solvers based on spectral methods. Here, we
give a briefly discussion on a number of direct Poisson solvers based on the modal expansion and the pseudospectral
approaches.

Haidvogel and Zang [9] developed an efficient and accurate Poisson solver based on the Chebyshev tau formulation [8,18]
and the eigenvalue–eigenvector matrix diagonalization method [19]. This approach is, indeed, fast and accurate for solving
Poisson equations, and has inspired the development of many other direct Poisson solvers. However, as mentioned in [9] this
method suffers from the round off error when the discretized system becomes large. To reduce the ill-condition of the
Chebyshev tau method, Dang-Vu and Delcarte [2], employed the three-term-recursion formula of Chebyshev polynomials
to simplify the spectral differentiation structure. In addition to the Chebyshev tau expansion, Shen [21] developed a Cheby-
shev Galerkin Poisson solver based on properly choosing the expansion basis, so the resulting discrete system of equations is
less ill-condition and can be solved accurately and efficiently by matrix decomposition methods. Recently, advanced devel-
opments of spectral-based Poisson and Helmholtz solvers for problems defined on unbounded domains are discussed in [22]
and references therein. Generally speaking, due to recursive mathematical properties inherited in the Chebyshev polynomi-
als these modal expansion approaches are very efficient in solving linear problems with constant coefficients and with var-
iable coefficients of polynomial type. However, for problems involving general variable coefficients the modal expansion
methods become less attractive, because the spectral differentiation structure of a differentiation operator involving variable
coefficients can become complicated.

In contrast to the modal expansion approaches, pseudospectral methods have also been used to develop direct and iter-
ative Poisson and Helmholtz solvers. For fluid dynamic simulations, Ku et al. [17] presented a Poisson solver, and Ehrenstein
and Peyret [4] presented a Helmholtz solver. Both methods utilize the Chebyshev pseudospectral formulation to discretize
. All rights reserved.
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the equations in the cartesian coordinate, and the resulting systems of equations are solved by matrix diagonalization tech-
niques. For problems defined on polar/cylindrical and spherical coordinates, pseudospectral formulations and matrix diag-
onalization techniques can be easily extended. For instance, Chen et al. [1] proposed direct solvers for problems in polar and
cylindrical coordinate systems. Navarro et al. [20] employed Chebyshev collocation method and Newton iterative method to
study an optimal control problem in a thermoconvective fluid flow. Huang et al. [16] developed an FFT based fast Poisson
solver by using spectral-finite difference method and special mapping for problems defined on spherical shells.

Applying pseudospectral methods for partial differentiation equations involves not only discretizing differential equations
but also enforcing boundary conditions. This often leads to a discrete system of equations having more equations than un-
knowns. To resolve this over determined issue, the traditional approach is enforcing the boundary condition strongly via
including the boundary conditions and directly discarding the collocation equations at the boundary points. However, as a glo-
bal approximation method the way of imposing boundary conditions can greatly affect the behavior of numerical solutions over
the entire domain. For example, the aforementioned Chebyshev Galerkin method [21] which utilizes basis functions satisfying
boundary conditions yield computation solutions with better accuracy compared to those obtained by the Chebyshev-tau
method.

Funaro and Gottlieb [5] proposed a penalty approach for imposing boundary condition in pseudospectral approximations
for partial differential equations. The penalty approach links boundary conditions and discretization equations through free
parameters whose values are determined analytically by satisfying certain constraints. For time dependent problems the
penalty parameter is considered as a stabilizer and, thus, the value of the parameter is determined to make the scheme sta-
ble. This stabilizing approach has led to successful constructions of pseudospectral schemes for time dependent problems
[5,6,11–15] since then. In [5] it was also demonstrated that the penalty parameter can be considered as an error minimizer
on solving model differential equation u0(x) = f(x) subject to a boundary condition. Indeed, the accuracy of the penalty meth-
od is better than that of the traditional pseudospectral discretization with strongly enforced boundary conditions. As men-
tioned in [5] that a penalty scheme leads to a better approximation is because it takes into account the fact that the solution
of a partial differential equation satisfies the equation arbitrary close to the domain boundary. Thus, the traditional approach
which discards the discretized equations at the boundaries immediately lose certain level of accuracy of the method. This
issue has motivated our study for constructing a scheme for Poisson equations, because the traditional approach leads to
discarding two discretization schemes. As a consequence certain level of accuracy of the method is lost.

In this study we adopt the concept illustrated in [5] and present an error minimized pseudospectral penalty formulation
for the Poisson equation on a rectangle domain, subject to Dirichlet, Neumann and Robin boundary conditions. The values of
the penalty parameters are determined analytically such that the L2 error of the approximation is minimized from a one
dimensional analysis. Numerical validations of the constructed pseudospectral penalty formulation are performed. The re-
sults, indeed, show that the present penalty scheme computes more accurate solutions than the traditional pseudospectral
formulation does. However, due to the involved mathematical difficulties we are unable to directly conduct an analysis to
determine values of the penalty parameters for multidimensional problems. Nevertheless, it is found from extensive numer-
ical experiments that the penalty parameters obtained from one dimensional analysis seem to remain applicable for con-
stant coefficient problems in multidimensional spaces. For more complicated problems such as variable coefficient
problems, further investigation on the optimal penalty parameters is worthy to be explored. Comparing our results chiefly
with Shen [21], Ehrenstein and Peyret [4] and Haidvogel and Zang [9], we observe that the accuracy of the present method
can be as good as the Chebyshev Galerkin method [21], considered as the most accurate method for the problem. Considered
as an advantage the scheme is very easy to implement. In the traditional method with boundary conditions enforced
strongly, one needs to use the boundary conditions to algebraically eliminate collocated field values at boundary points
in the discretized Poisson equations. This can be complicated if Neumann and Robin boundary conditions are involved. In
the present method, the boundary conditions is directly appended to the discretized Poisson equations and, thus, makes
the present method very easy to implement.

This paper is organized as follows. In Section 2 we present a Chebyshev pseudospectral penalty scheme for solving the model
Poisson problem, and special attention is paid upon determining the values of the penalty parameters such that the approxi-
mation error is minimized. Section 3 is devoted to the generalization and the numerical validations of the pseudospectral pen-
alty scheme for solving two and three dimensional Poisson equations. Concluding remarks are given in Section 4.
2. Model problem and pseudospectral penalty formulation

2.1. Poisson equations and boundary conditions

Consider u(x) satisfying the Poisson equation subject to the boundary conditions of the form,
u00ðxÞ ¼ f ðxÞ; x 2 ½�1;1�; ð1aÞ

B�uð�1Þ ¼ g�; B� ¼ a� � b�
d
dx
; ð1bÞ
where B� are the boundary operators, a� and b� are non-negative real numbers, f is a specified function, and g± are given
values.
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Employing the pseudospectral Chebyshev method [15], we construct the numerical solution v(x) as
vðxÞ ¼
XN

j¼0

ljðxÞvðxjÞ; ljðxÞ ¼
ð�1ÞNþjþ1ð1� x2ÞT 0NðxÞ

cjN
2ðx� xjÞ

; cj ¼
2 if j ¼ 0;N;
1 otherwise;

�

where N is a positive integer, xj = �cos(jp/N) for 0 6 j 6 N are the Gauss–Lobatto–Chebyshev points, v(xj) are the collocated
field values approximating u(xj), and lj(x) are the Lagrange interpolating functions associated with the grid points. Notice that
since ð1� x2ÞT 0ðxÞ ¼ C

QN
i¼0ðx� xiÞ where C is a constant, the Lagrange interpolating functions satisfy the property lj(xi) = dij

where dij is the usual Kronecker delta function.
To solve Eq. (1) we require v(x) to satisfy the collocation equations
v 00ðx0Þ ¼ f ðx0Þ þ s� a�vðx0Þ � b�v 0 ðx0Þ � g�ð Þ; ð2aÞ
v 00ðxiÞ ¼ f ðxiÞ; i ¼ 1;2; . . . ;N � 1; ð2bÞ
v 00ðxNÞ ¼ f ðxNÞ þ sþ aþvðxNÞ þ bþv 0ðxNÞ � gþ

� �
; ð2cÞ
where s± are parameters with values depending the type of the imposed boundary conditions. Notice that for a given N if the
values of the penalty parameters approach positive and negative infinity, then Eqs. (2a) and (2c) recover the strongly en-
forced boundary conditions in the following sense:
a�vðx0Þ � b�v 0ðx0Þ � g� ¼ ðv 00ðx0Þ � f ðx0ÞÞ=s� ! 0;
aþvðxNÞ þ bþv 0ðxNÞ � gþ ¼ ðv 00ðxNÞ � f ðxNÞÞ=sþ ! 0:
An important issue concerning the use of penalty boundary conditions is how to determine the values of these penalty
parameters s± as the degree of the approximation polynomial N increases. This is the main theme of this study and the de-
tails are presented next.

2.2. Error minimizer

Consider the model equation
u00ðxÞ ¼ �16p2 sinð4pxÞ ð3Þ
subject to following sets of boundary conditions:
Case (A), Dirichlet boundary conditions at x = ±1,
uð�1Þ ¼ 0: ð4Þ
Case (B), Robin boundary conditions at x = ±1,
uð�1Þ � u0ð�1Þ ¼ 4p: ð5Þ
Case (C), Dirichlet Boundary condition at x = �1 and Neumann boundary condition at x = 1
uð�1Þ ¼ 0; u0ð1Þ ¼ 4p: ð6Þ
Case (D), Neumann boundary condition at x = �1 and Robin boundary condition at x = 1
u0ð�1Þ ¼ 4p; uð1Þ þ u0ð1Þ ¼ 4p: ð7Þ
Case (E), Robin boundary condition at x = �1 and Dirichlet boundary condition at x = 1
uð�1Þ � u0ð�1Þ ¼ �4p; uð1Þ ¼ 0: ð8Þ
The exact solutions to all cases are u = sin (4px).
We first investigate the error behavior of numerical solutions obtained by the present method as the values of the penalty

parameters vary. The model equation subject to boundary conditions Case (A) and Case (B) are solved by the scheme Eq. (2).
Since for each case the boundary conditions imposed at x = ±1 are of the same type, we simply take s+ = s� = s 2
(�1,0) [ (0,1). We define the approximation error as
Rðsþ; s�Þ ¼
p
N

XN

i¼0

ðuðxiÞ � vðxiÞÞ2

ci

 !1=2

:

In Fig. 1 we plot R as a function of s. It is clearly shown that in each case there exists s = sc which minimizes the error. For the
Dirichlet case it is found that sc < 0 and for the Robin case it is found that sc > 0. Depending on the type of the imposed
boundary condition, the error behavior is also quite different. For the Dirichlet case the minimum error occurring at sc is
slightly smaller than the error as s ? ±1. However, for the Robin case we observe that the error occurring at s = sc is less
than the error as s ? ±1, at least by two order in magnitude. This indicates that if the value of s can be properly chosen
then the numerical solution computed by the penalty scheme will have better accuracy than the solution obtained by the
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traditional pseudospectral scheme with boundary conditions enforced strongly. A question is immediately raised. Can we
determined the value of s in the penalty scheme from the prescribed data stated in a Poisson problem, such that the approx-
imation error is minimized? We answer this question in the following analysis.

Following the error minimizing approach shown in [5] we determine the values of the penalty parameters through min-
imizing the difference between the numerical solution v satisfying Eq. (2) and the exact solution satisfying the interpolated
continuous problem on the grid points, i.e.,
u00ðxiÞ ¼ f ðxiÞ; ð9aÞ
B�uð�1Þ ¼ g�: ð9bÞ
Notice that u(x) in Eq. (9), v(x) in Eq. (2), and f(x) in both equations are polynomials of degree at most N. If the degree of f(x) is
at most N � 2 then v(x) = u(x) though out the whole domain. If the degree of the polynomial f is greater than N � 2 then f can
be expressed as
f ðxÞ ¼ A�f�ðxÞ þ AþfþðxÞ þ PN�2ðxÞ; f�ðxÞ ¼
ð1� xÞT 0NðxÞ

2N2 ;
where A± are constants and PN�2(x) is a polynomial of degree N � 2. Therefore, we can consider u = u1 + u2 where u1 and u2

satisfy
u001 ¼ A�f�ðxÞ þ AþfþðxÞ; B�u1ð�1Þ ¼ 0;
u002 ¼ PN�2; B�u2ð�1Þ ¼ g�:
Because u2 can be solved exactly by the pseudospectral penalty formulation, the error function R is attributed to numerically
solving u1. Thus, for error analysis it is sufficient to consider the problem with f = A�f�(x) + A+f+(x) in Eq. (9) subject to homo-
geneous boundary conditions g± = 0.

Denote the solutions corresponding to f = f+ and f = f� by u = u+ and u = u�, respectively. They are
u�ðxÞ ¼
TNþ1ðxÞ

4N2ðN þ 1Þ
� TN�1ðxÞ

4N2ðN � 1Þ
� TNþ2ðxÞ

8NðN þ 1ÞðN þ 2Þ �
TNðxÞ

4N2ðN2 � 1Þ
� TN�2ðxÞ

8NðN � 1ÞðN � 2Þ þ C�T1ðxÞ þ D�T0ðxÞ; ð10Þ
where C+, C�, D+ and D� are determined by the boundary conditions, given as
Cþ ¼ ða�Gþ � aþHþÞ=c; Dþ ¼ ðða� þ b�ÞGþ þ ðaþ þ bþÞHþÞ=c;
C� ¼ ða�G� � aþH�Þ=c; D� ¼ ðða� þ b�ÞG� þ ðaþ þ bþÞH�Þ=c;
with
c ¼ ðaþ þ bþÞa� þ aþða� þ b�Þ;

Gþ ¼
aþ

N2ðN2 � 4Þ
� bþð2N2 � 1Þ

2N2ðN2 � 1Þ
; G� ¼ �

3aþ
N2ðN2 � 1ÞðN2 � 4Þ

þ bþ
2N2ðN2 � 1Þ

; ð11aÞ

Hþ ¼ �
ð�1ÞN�13a�

N2ðN2 � 1ÞðN2 � 4Þ
þ ð�1ÞN�1b�

2N2ðN2 � 1Þ
; H� ¼

ð�1ÞN�1a�
N2ðN2 � 4Þ

� ð�1ÞN�1b�ð2N2 � 1Þ
2N2ðN2 � 1Þ

: ð11bÞ
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For f = f± the corresponding numerical solutions v = v±(x) satisfying Eqs. (2a)–(2c) are linear functions as
v�ðx; s�Þ ¼ �a�T1ðxÞ � ða� þ b�ÞT0ðxÞ
� � ð�1ÞN

cs�
: ð12Þ
For f = f+ and f = f� we define the error functions R+ and R�, respectively, as
R�ðs�Þ ¼
p
N

XN

i¼0

A2
�

ci
½u�ðxiÞ � v�ðxi; s�Þ�2

 !1=2

:

The necessary condition for s± to minimize R± is the vanishing of @R±/@s±, leading to following equations
XN

i¼0

1
ci

u�ðxiÞv�ðxi; s�Þ ¼
XN

i¼0

1
ci

v2
�ðxi; s�Þ:
Substituting the expressions of u± and v±, and employing the discrete orthogonal relationship of Chebyshev polynomials,
XN

l¼0

1
cl

TjðxlÞTkðxlÞ ¼
djkcjN

2
;

we calculate the summations and obtain the parameters s± as
sþ ¼
� a2

� þ 2ða� þ b�Þ
2

h i
a2
� þ 2ða� þ b�Þ

2
h i

Gþ þ 2ða� þ b�Þðaþ þ bþÞ � a�aþ
� �

Hþ
; ð13aÞ

s� ¼
ð�1ÞN a2

þ þ 2ðaþ þ bþÞ
2

h i
2ðaþ þ bþÞða� þ b�Þ � aþa�
� �

G� þ a2
þ þ 2ðaþ þ bþÞ

2
h i

H�
; ð13bÞ
where G± and H± are provided in Eqs. (11). For the Dirichlet and the Neumann boundary conditions, the penalty parameters
can be deduced from Eq. (13) as follows:

Dirichlet boundary condition: a± = 1, b± = 0,
sþ ¼ s� ¼
�ðN2 � 1ÞðN2 � 4Þ for N even;

�ðN2 � 1ÞðN2 � 4Þð1� 2=N2Þ�1 for N odd:

(

Neumann boundary condition: a± = 0, b± = 1,
sþ ¼ s� ¼
N2 � 1 for N even;
N2 for N odd:

(

Notice that in the above analysis the penalty parameters are derived based on minimizing the error functions R+ and R�
rather than R. This does not cause any problem, because they are related by
R2ðsþ; s�Þ 6 2 R2
þðsþÞ þ R2

�ðs�Þ
� �

:

This argument is verified by numerical computations. In Fig. 1 the errors corresponding the error minimized penalty param-
eters are plotted as red dots. It is clearly shown that the penalty parameters provided by Eq. (13), indeed, leads to very accu-
rate computational results.

Tables 1 and 2 show the convergence results of the present method on solving Eq. (1) subject to Dirichlet boundary con-
ditions imposed at both end points (Case (A)) and subject to Robin boundary conditions imposed at both end points (Case
(B)). The L2 and L1 errors are measured for computations with error minimized s. For comparison, we also measure the L2

and L1 errors of the solution obtained by the pseudospectral method with strongly enforced boundary conditions. It is
shown that the present method is, indeed, better in accuracy. Moreover, we observe that for Robin boundary conditions en-
forced at the boundaries, the numerical solutions computed by the scheme with error minimized s are much more accurate
than those obtained by the scheme with boundary conditions enforced strongly.

As the penalty parameters vary, the error behavior of numerical solutions obtained by the present method on solving Eq.
(1) subject to different types of boundary conditions (Case (C) and (D)) are also conducted. In Figs. 2 and 3 the L2 errors are
plotted as functions of the parameter s+ and s� for a fixed N. The L2 errors corresponding to the error minimized penalty
parameters s+ and s� are marked as red dots. It is shown that these red dots are located at the minimum of the error surfaces.

The convergence studies of the present method on solving Poisson equations involving different types of boundary con-
ditions at boundaries (Case (C) and (D)), are presented in Tables 3–5. The results show that for each N the error of the numer-
ical solutions computed by the present error minimized scheme is at least one order of magnitude less than that of the
solutions obtained by the scheme with strongly enforced boundary conditions.



Table 1
Convergent tests of the problem, Eq. (3) subject to boundary conditions Case (A), Eq. (6).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1error

16 5.8633e�03 4.8134e�03 6.1393e�03 5.6150e�03
20 6.2430e�05 4.6928e�05 7.0416e�05 6.2465e�05
24 3.2081e�07 2.2365e�07 3.8433e�07 3.4827e�07
28 8.7487e�10 5.9210e�10 1.0927e�09 1.0446e�09
32 1.3760e�12 9.6856e�13 1.7426e�12 1.7695e�12

Table 2
Convergent tests of the problem, Eq. (3) subject to boundary conditions Case (B), Eq. (7).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1 error

16 6.1901e�03 5.6880e�03 2.3737e�01 1.9079e�01
20 6.8103e�05 5.9442e�05 6.5479e�03 5.2502e�03
24 3.5437e�07 3.0959e�07 6.1006e�05 4.8855e�05
28 9.6978e�10 8.6371e�10 2.5653e�07 2.0521e�07
32 1.4800e�12 1.3511e�12 5.6771e�10 4.5389e�10
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Fig. 2. Surface (left) and contour (right) plots of the L2 error (R(s+,s�)) of the numerical solution obtained by the penalty scheme on solving Eq. (3) subject to
boundary conditions Case (C). The error corresponding to the error minimized penalty parameters is marked as a red dot. N = 16. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Generalization of the method

In this section we present a direct Poisson solver based on the pseudospectral penalty and the matrix diagonalization
methods for problems defined on a rectangular domain.

3.1. Direct solver for Poisson equations in 3D

Consider the Poisson equation
r2uðx; y; zÞ ¼ f ðx; y; zÞ; ðx; y; zÞ 2 ½�1;1� � ½�1;1� � ½�1;1�; ð14Þ
subject to the boundary conditions
Bx
�uð�1; y; zÞ ¼ gx

�ðy; zÞ; Bx
� ¼ ax

� � bx
�@x; ð15aÞ

By
�uðx;�1; zÞ ¼ gy

�ðx; zÞ; By
� ¼ ay

� � by
�@y; ð15bÞ

Bz
�uðx; y;�1Þ ¼ gz

�ðx; yÞ; Bz
� ¼ az

� � bz
�@z; ð15cÞ
where r2 is the Laplace operators, Bx
�;B

y
� and Bz

� are boundary operators acting on the boundary surfaces x = ±1, y = ± 1 and
z = ±1, respectively, am

� and bm
� for m = x, y, z are parameters characterizing the imposed boundary conditions at the surfaces,

and @m is the partial derivative with respect to the variable m.
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Fig. 3. Surface (left) and contour (right) plots of the L2 error (R(s+,s�)) of the numerical solution obtained by the penalty scheme on solving Eq. (3) subject to
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references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Convergent test of the problem, Eq. (1) subject to boundary conditions Case (C), Eq. (6).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1error

16 7.5861e�03 8.2458e�03 8.2730e�01 7.6315e�01
20 8.4171e�05 8.9049e�05 2.2776e�02 2.1001e�02
24 4.2298e�07 4.4719e�07 2.1196e�04 1.9540e�04
28 1.1169e�09 1.2001e�09 8.9051e�07 8.2080e�07
32 1.5770e�12 1.6215e�12 1.9692e�09 1.8149e�09

Table 4
Convergent test of the problem, Eq. (1) subject to boundary conditions Case (D), Eq. (7).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1error

16 7.7124e�03 8.3458e�03 8.2730e�01 7.6315e�01
20 8.7012e�05 9.1708e�05 2.2776e�02 2.1001e�02
24 4.4364e�07 4.7063e�07 2.1189e�04 1.9534e�04
28 1.1853e�09 1.2869e�09 8.9054e�07 8.2082e�07
32 1.7921e�12 1.9433e�12 1.9697e�09 1.8153e�09

Table 5
Convergent test of the problem, Eq. (1) subject to boundary conditions Case (E), Eq. (8).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1error

16 6.1177e�03 6.0597e�03 2.7512e�01 2.5438e�01
20 6.6056e�05 6.1317e�05 7.5796e�03 7.0003e�03
24 3.3923e�07 3.0780e�07 7.0574e�05 6.5133e�05
28 9.2113e�10 8.3299e�10 2.9660e�07 2.7361e�07
32 1.4328e�12 1.3012e�12 6.5625e�10 6.0519e�10
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To solve Eq. (14), we introduce the three dimensional grid points
ðxi; yj; zkÞ ¼ � cos
ip
Nx

	 

; cos

jp
Ny

	 

; cos

kp
Nz

	 
	 

; 0 6 i=j=k 6 Nx=Ny=Nz:
The associated three dimensional Lagrange interpolating functions Li,j,k(x,y,z) are constructed as
Li;j;kðx; y; zÞ ¼ lx
i ðxÞl

y
j ðyÞl

z
kðzÞ;
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where lx
i ðxÞ; l

y
j ðyÞ and lz

kðzÞ are the one dimension Lagrange interpolating functions based on the grid points xi, yj and zk,
respectively. We construct the numerical solution v as
vðx; y; zÞ ¼
XNz

k¼0

XNy

j¼0

XNx

i¼0

Li;j;kðx; y; zÞv i;j;k
satisfying the penalty scheme
r2v i;j;k ¼ fi;j;k þ sx
�d0i Bx

�v0;j;k � gx
�ðyj; zkÞ

� �
þ sx

þdNxi Bx
þvNx ;j;k � gx

þðyj; zkÞ
� �

þ sy
�d0j By

�v i;0;k � gy
�ðxi; zkÞ

� �
þ sy

þdNyi By
þv i;Ny;k � gy

þðxi; zkÞ
� �

þ sz
�d0k Bz

�v i;j;0 � gz
�ðxi; yjÞ

� �
þ sz

þdNzk Bz
þv i;j;Nz � gz

þðxi; yjÞ
� �

; ð16Þ
where fi,j,k = f(xi,yj,zk). The scheme can be expressed as
XNx

r¼0

Ai;rv r;j;k þ
XNy

s¼0

Bj;sv i;s;k þ
XNz

t¼0

Ck;tv i;j;t ¼ Fi;j;k; ð17Þ
where
Ai;r ¼
d2lxr ðxiÞ

dx2 � sx
�d0;i ax

� � bx
�

dlx
r ðxiÞ
dx

	 

� sx

þdNx ;i ax
þ þ bx

þ
dlx

r ðxiÞ
dx

	 

; 0 6 i; r 6 Nx; ð18aÞ

Bj;s ¼
d2ly

s ðyjÞ
dy2 � sy

�d0;j ay
� � by

�
dly

s ðyjÞ
dy

 !
� sy

þdNy ;j ay
þ þ by

þ
dly

s ðyjÞ
dy

 !
; 0 6 j; s 6 Ny; ð18bÞ

Ck;t ¼
d2lz

t ðzkÞ
dz2 � sz

�d0;k az
� � bz

�
dlzt ðzkÞ

dz

	 

� sz

þdNz ;k az
þ þ bz

þ
dlz

t ðzkÞ
dz

	 

; 0 6 k; t 6 Nz; ð18cÞ

Fi;j;k ¼ fi;j;k � sx
�d0;igx

�ðyj; zkÞ � sx
þdNx ;ig

x
þðyj; zkÞ � sy

�d0;jgy
�ðxi; zkÞ � sy

þdNy ;jg
y
þðxi; zkÞ � sz

�d0kgz
�ðxi; yjÞ � sz

þdNzkgx
þðxi; yjÞ:ð18dÞ
Let A, B and C be the matrices with entries as Ai,r, Bj,s and Ck,t, respectively. Assume that the matrices A, B and C have the
following transformation
A ¼ X�1KxX; Kx ¼ diag kx
0; k

x
1; . . . ; kx

Nx

� �
; ð19aÞ

B ¼ Y �1KyY ; Ky ¼ diag ky
0; k

y
1; . . . ; ky

Ny

� �
; ð19bÞ

C ¼ Z�1KzZ; Kz ¼ diag kz
0; k

z
1; . . . ; kz

Nz

� �
; ð19cÞ
where kx
i ; k

y
j and kz

k are the eigenvalues of the matrices A, B and C, and X, Y and Z are the eigenvector matrices of A, B and C,
respectively. Then, we can first compute
eF r;s;t ¼
1

kx
r þ ky

s þ kz
t

XNx

i¼0

XNy

j¼0

XNz

k¼0

X�1
r;i Y�1

s;j Z�1
t;k Fi;j;k; ð20Þ
in which X�1
r;i ;Y

�1
s;j and Z�1

t;k are matrix elements of X�1, Y�1 and Z�1, respectively. Then, numerical solution is computed as
v i;j;k ¼
XNx

r¼0

XNy

s¼0

XNz

t¼0

Xi;rYj;sZk;t
eF r;s;t; ð21Þ
with Xi,r, Yj,s and Zk,t being the matrix elements of X, Y and Z.
For the two dimensional problems
r2uðx; yÞ ¼ f ðx; yÞ; ðx; yÞ 2 ½�1;1� � ½�1;1�;
Bx
�uð�1; yÞ ¼ gx

�ðyÞ; Bx
� ¼ ax

� � bx
�@x;

By
�uðx;�1Þ ¼ gy

�ðxÞ; By
� ¼ ay

� � by
�@y;
the scheme can be deduced from the above formulation as
Fi;j ¼ fi;j � sx
�d0;igx

�ðyjÞ � sx
þdNx ;ig

x
þðyjÞ � sy

�d0;jgy
�ðxiÞ � sy

þdNy ;jg
y
þðxiÞ;

eF r;s ¼
1

kx
r þ ky

s

XNx

i¼0

XNy

j¼0

X�1
r;i Y�1

s;j Fi;j; v i;j ¼
XNx

r¼0

XNy

s¼0

Xi;rYj;s
eF r;s:
Unlike the one dimensional problem, we are unable to conduct a multidimensional analysis to determine the values of the
penalty parameters. However, as we shall see later from the numerical results, adopting the penalty parameters obtained
from the one dimensional analysis in the multidimensional schemes also computes error minimized results. This may be
due to the fact that the 2D and 3D schemes are based on tensor product formulation which possibly preserve the error
minimized property of the one-dimensional scheme. The theoretical issue may be worth to be analyzed in the future.
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The matrix diagonalization method relies on the eigenvalue–eigenvector decomposition of the matrices A, B and C (see
Eqs. (19a)–(19c). In this study we assume that the these matrices can be diagonalized based on the following results ob-
tained by others. The eigenvalue spectra of these matrices, depending on the values of the penalty parameters and the im-
posed boundary conditions, have been investigated theoretically and numerically in several studies. For js+j = js�j?1 the
present formulation recovers the traditional method with boundary conditions enforced strongly. Gottlieb and Lustman [7]
proved that the eigenvalues of the traditional method are distinct and negative, indicating that the matrices A, B and C can be
diagonalized. For sufficiently large values of the penalty parameters, Funaro and Gottlieb [5] showed analytically that the
non vanishing eigenvalues of these matrices, resulting from the penalty formulation with Neumann boundary conditions,
are distinct and negative. Hesthaven and Gottlieb [11] mentioned that the eigenvalue spectra of these matrixes resulting
from the penalty formulation remain distinct for a wide positive value range of these penalty parameters by numerical com-
putations. In addition to these known results, we have also verified the assumption by conducting extensive computations of
the eigenvalue spectra of these matrices for a wide value range of these penalty parameters, including negative values of the
parameters. Our computations indicate that the eigenvalue spectra remain distinct. Thus, we are confident that this assump-
tion is reasonable.
3.2. Numerical validations

We have conducted a series of numerical experiments to validate the present method. The results are present next.
3.2.1. 2D problem
Consider u = sin(4px)sin(4py) satisfying the 2D Poisson equation
@2u
@x2 þ

@2u
@y2 ¼ �32p2 sinð4pxÞ sinð4pyÞ; ðx; yÞ 2 ½�1;1� � ½�1;1� ð22Þ
subject to the following boundary conditions:
Case (A),
uð�1; yÞ � @uð�1; yÞ
@x

¼ �4p sinð4pyÞ; @uðx;�1Þ
@y

¼ 4p sinð4pxÞ: ð23Þ
Case (B),
uð�1; yÞ ¼ 0; uðx;�1Þ ¼ 0: ð24Þ
Case (C),
uð�1; yÞ ¼ 0;
@uð1; yÞ
@x

¼ 4p sinð4pyÞ; uðx;�1Þ ¼ 0; uðx;1Þ þ @uðx;1Þ
@y

¼ 4p sinð4pxÞ: ð25Þ
To investigate the error behavior as the penalty parameters vary, Eq. (22) subject to boundary conditions Case (A), is
solved by the penalty scheme. Since along each coordinate direction the boundary conditions imposed at the two ends
are of the same kind, we take sx

� ¼ sx and sy
� ¼ sy. The error as function of sx and sy is demonstrated in Fig. 4, for N = 20.

It is shown clearly that the error surface has a dip minimum, and the error corresponding to the error minimized penalty
parameters sx and sy is at the dip. The results indicates that the error minimizing penalty parameter obtained from the
1D analysis remain valid for 2D problems.

Table 6 present the convergence studies of the error minimized scheme on solving the 2D Poisson equation subject to
boundary conditions Case (A) as N increases. It is shown that the penalty scheme with error minimized penalty parameters
indeed computes solutions with better accuracy before the error is driven down to the numerical noise level.

Table 7 presents the convergence study of the method on solving Eq. (22) subject to boundary conditions Case (B). This
test problem has been used in many research works, and our results are compared to those obtained by other methods
[9,4,21]. It is shown that the solution computed by the method is more accurate than that computed by the Chebyshev
tau method [9]. Compared to the pseudospectral approximation with boundary conditions enforced strongly [4], we see that
the present penalty scheme computes solutions with better accuracy, even at the numerical noise level. In addition, our
results are as accurate as those obtained by the most accurate Chebyshev Galerkin method [21], for N = 16 and N = 32.
For higher values of N it is observed that the present solution accuracy is limited toOð10�14Þ and can not be further improved
by increasing N, indicating that the round-off error has affected the accuracy of the solution. On the other hand, the Cheby-
shev Galerkin method [21] which uses specially constructed bases, has better round-off error performance. This may be due
to the boundary conditions are exactly satisfied in Galerkin method, while the boundary conditions are only approximately
satisfied in current method.

Table 8 presents the convergence study of the method on solving Eq. (22) subject to boundary conditions Case (C). For this
case the boundary conditions imposed at parallel sides are of different kinds. Compared to the traditional approach it is
shown that the penalty scheme computes solutions with better accuracy.
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Fig. 4. Surface and contour plots of log10(L2error) as a function of the penalty parameters sx and sy for Nx = Ny = 20. Test problem: uxx + uyy = �32p2-

sin(4px)sin(4py) subject to boundary conditions Case (A), Eq. (23).

Table 6
Convergence test of the 2D Poisson equation, Eq. (22), subject to boundary condition Case (A), Eq. (23).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1 error

16 7.7325e�03 5.2042e�03 1.0911e�01 9.3090e�02
20 9.1325e�05 6.8995e�05 3.0619e�03 2.5662e�03
24 4.9615e�07 3.8162e�07 2.8567e�05 2.3930e�05
28 2.2247e�12 1.9539e�12 2.6613e�10 2.2226e�10
32 7.3045e�14 9.4147e�14 1.9322e�14 2.3648e�14
48 4.0532e�14 5.5681e�14 5.9653e�14 7.2664e�14
64 8.7292e�14 6.6391e�14 1.0678e�13 1.2695e�13

Table 7
Convergence test of 2D Poisson equation, Eq. (22), subject to boundary conditions Case (B), Eq. (24). CT: Chebyshev tau method [9]; CC: Chebyshev collocation
method [4]; CG: Chebyshev Galerkin [21].

N Present method CT CC CG

L2 error L1 error L1 error L1 error L1 error

16 6.89e�03 5.25e�03 3.33e�02 5.25e�03 5.22e�03
20 8.54e�05 6.26e�05 7.52e�05
24 4.75e�07 3.76e�07 6.89e�06 4.05e�07
32 2.17e�12 1.78e�12 4.77e�11 2.87e�12 2.17e�12
40 1.24e�14 2.05e�14 1.47e�12
48 9.40e�15 1.03e�14 1.90e�12 3.63e�12
64 3.15e�14 5.05e�14 8.67e�13 3.90e�12 6.11e�15
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3.2.2. 3D problem
We give our final test example. Consider u = sin(4px) sin(4py) sin(4pz) satisfying the 3D Poisson equation
@2u
@x2 þ

@2u
@y2 þ

@2u
@z2 ¼ �48p2 sinð4pxÞ sinð4pyÞ sinð4pzÞ; ðx; yÞ 2 ½�1;1� � ½�1;1� � ½�1;1� ð26Þ
subject to the following boundary conditions:
uð�1; y; zÞ ¼ 0;
@uð1; y; zÞ

@x
¼ 4p sinð4pyÞ sinð4pzÞ; ð27aÞ

@uðx;�1; zÞ
@y

¼ 4p sinð4pxÞ sinð4pzÞ; uðx;1; zÞ þ @uðx;1; zÞ
@y

¼ 4p sinð4pxÞ sinð4pzÞ; ð27bÞ

uðx; y;�1Þ � @uðx; y;�1Þ
@z

¼ �4p sinð4pxÞ sinð4pyÞ; @uðx; y;1Þ
@z

¼ 4p sinð4pxÞ sinð4pyÞ: ð27cÞ
The problem is solved by the penalty scheme and the pseudospectral formulation with boundary condition enforced
strongly. The convergence study is presented in Table 9. It is shown that the penalty scheme with the error minimized s in-
deed computes more accurate approximations for N < 32. However, as N P 32 the system of equations becomes large we
observe that the error can not be driven down due to the round off error.



Table 8
Convergent test of 2D Poisson equation, Eq. (22) subject to boundary conditions Case (C), Eq. (25).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1 error

16 7.30e�03 5.28e�03 6.75e�02 1.00e�01
20 8.84e�05 6.75e�05 1.87e�03 2.75e�03
24 4.87e�07 3.80e�07 1.74e�05 2.57e�05
28 2.21e�12 1.93e�12 1.68e�10 2.43e�10
32 1.59e�14 1.94e�14 1.94e�11 2.25e�11
48 2.08e�14 2.74e�14 6.12e�11 8.92e�11
64 3.75e�14 4.24e�14 1.43e�11 3.31e�11

Table 9
Convergence test of the 3D problem, Eq. (26) subject to the boundary conditions Eq. (27).

N Present method Strongly enforced BC

L2 error L1 error L2 error L1error

16 9.0627e�03 5.4835e�03 4.5057e�02 5.6987e�02
20 1.1572e�04 8.7926e�05 1.3111e�03 1.6651e�03
24 6.5795e�07 5.0986e�07 1.2725e�05 1.5583e�05
28 3.0727e�12 2.6552e�12 1.2452e�10 1.4530e�10
32 2.0128e�14 2.8533e�14 1.1011e�14 1.3784e�14
48 2.5304e�14 3.2713e�14 1.5377e�14 1.5321e�14
64 8.4110e�14 1.1653e�13 3.0008e�14 3.7415e�14
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3.3. Computational issues

As to computing efficiency, the asymptotic operation count for current method in 3D case based on Eqs. (20) and (21) is
2NxNyNz(Nx + Ny + Nz), and its counterpart for 2D case is 2NxNy(Nx + Ny) [10]. Obviously, it is far superior to method expressing
Laplace operator in tensor product. For an FFT-based method the asymptotic operation count is basically 2NxNyNz(log(Nx) + -
log(Ny) + log(Nz)) for 3D case, and 2NxNy(log(Nx) + log(Ny)) for 2D case. Indeed, our method which relies on extensive matrix–
matrix multiplications is inferior to FFT-based methods in theory. However, this inferiority also depends on hardware. For
moderate Nx, Ny, and Nz, it is not necessarily inferior in computers nowadays [3]. Of course, for large grid resolution, FFT-
based methods remain the the best choice.

Not only the present penalty formulation has an advantage over the traditional pseudospectral method [4] in accuracy, it
is also very easy to implement. In the traditional approach one needs to use the boundary conditions to algebraically elim-
inate the collocated field values at the boundary points in the discretized partial differential equations. For Dirichlet bound-
ary conditions, the tradition approach can still be implemented easily. However, if Neumann or Robin boundary condition is
involved, the eliminating procedure increases the complexity in coding. As we have seen the expression of the scheme in this
section, the boundary conditions are directly appended to the discretized partial differential equations. This straightforward
approach, thus, makes the penalty scheme very easy in coding.

We end this section by a brief discussion on applying the present formulation for discretizing the Laplace operator in heat
equations. We want to emphasis that the proposed penalty formulation for the Laplace operator is for elliptic problems, not
for parabolic ones. In fact, applying the present pseudospectral penalty Laplace operator for heat equations involving
Dirichlet boundary conditions, will lead to unstable computations, because the matrix resulting from the present pseudo-
spectral penalty discretization is not semi-negative definite. When Dirichlet boundary condition is involved it is found from
numerical computations that all the eigenvalues of the discretized Laplace operator are distinct. However, there are two po-
sitive eigenvalues approaching positive infinity as N increases, and this is the origin of the instability. We have devised meth-
od to overcome this issue and will present it elsewhere due to the scope of this study.
4. Concluding remarks

We have presented a pseudospectral penalty direct solver for Poisson equations subject to general boundary conditions
defined on rectangular domain. In the present formulation the values of the penalty parameter are chosen analytically such
that the error is minimized. From numerical experiments the present method with error minimized parameters, indeed,
computes solutions with better accuracy compared to those obtained by the traditional approach which strongly enforces
boundary conditions. Since the present and the traditional pseudospectral methods are only different by the imposition
of boundary conditions, the present formulation can be adopted easily into the traditional solver to improve the accuracy
of Poisson solvers.
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Compared to the modal expansion spectral methods, the pseudospectral method based on Lagrange interpolation basis
offers more flexibility on solving partial differential equations with variable coefficients. With the use of the penalty meth-
odology of imposing boundary conditions as shown in the present study, it is also possible to improve the accuracy of other
pseudospectral direct Poisson solvers in polar and cylindrical coordinates with boundary conditions enforced strongly.

As mentioned in [5] the solution of a partial differential equation satisfies the equation arbitrary close to the boundary.
Taking this argument into account, the penalty formulation which includes the discretized equations at the boundaries in-
stead of discarding them, thus, yield numerical solutions with better accuracy, also as observed in the present results. This
implicates that the penalty methodology can be a very promising approach to construct pseudospectral schemes with better
accuracy for fourth order elliptic partial differential equations. For this type of equations four boundary conditions are spec-
ified. As a consequence, the traditional pseudospectral formulation with strongly enforced boundary conditions discards four
discretized equations to make into a well determined system. With the use of the error minimized penalty method, these
discarded equations can be included in the formulation to improve the accuracy of solutions. We hope to report this devel-
opment in the near future.
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