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In this project we are mainly concerned with a group
of linear transforms of Brownian motion and the
related properties. If the resulting stochastic
processes are again Brownian motions and whose
Brownian filtration is strictly smaller than the
original Brownian filtration, we aim to investigate
the orthogonal decomposition of the original Brownian
filtration. Moreover, the ergodic property of the
resulting stochastic processes is also one of our
main discussion points.
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In credit risk modeling, Gaussian and Student’s $t$ variates arise
primarily from the copula method to retain certain correlation
structures among defaultable assets. We propose efficient importance
sampling algorithms to estimate lower tail probabilities of these two
variates 1n any finite dimension. Variances of importance sampling
estimators are shown asymptotically optimal by means of the large
deviation theory and a truncation argument. Numerical comparisons with
commercial codes, such as mvncdf.m and mvtcdf.m in Matlab, demonstrate
robustness and efficiency of our proposed algorithms. Moreover, the
flexibility of these algorithms can be seen from an application of
probability estimation for the $n$th-to-default, i.e., the $n$th order
statistic, given a credit portfolio.
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Abstract

In credit risk modeling, Gaussian and Student’s ¢ variates arise primarily from the cop-
ula method to retain certain correlation structures among defaultable assets. We propose
efficient importance sampling algorithms to estimate lower tail probabilities of these two
variates in any finite dimension. Variances of importance sampling estimators are shown
asymptotically optimal by means of the large deviation theory and a truncation argu-
ment. Numerical comparisons with commercial codes, such as mvncdf.m and mvtcdf.m in
Matlab, demonstrate robustness and efficiency of our proposed algorithms. Moreover, the
flexibility of these algorithms can be seen from an application of probability estimation

for the nth-to-default, i.e., the nth order statistic, given a credit portfolio.

Keywords: copula method, importance sampling, variance analysis, lower tail probability,
nth-to-default probability.
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1 Introduction

Recent financial events and studies in credit risk have addressed the importance of high-
dimensional computation. A credit portfolio may consist of a large amount of defaultable
assets including loans, mortgages, credit derivatives such as credit default swaps and col-
lateral debt obligations, etc. The probability that multiple assets are defaulted at the
same time can be used as a measure of extreme risks or lower tail dependence [5]. This
joint default probability is also fundamental to predict possible losses [12] and evaluate

multi-name credit derivatives [11].

The study of default time correlations is a key subject in credit risk modeling. A
detailed account for static and dynamic correlation structures and their estimation meth-
ods can be found in [5, 15] and references therein. Recently, Malliavin and Mancino [16]
analyze a nonparametric Fourier transform method for estimation of volatilities and cor-
relations under semimartingale models in continuous time. Among all these correlation
structures for default times, the copula method [3] has been widely used since last decade.
Its popularity is due to the statistical flexibility to handle the comovement between mar-
kets, risk factors, etc [3], as opposed to, for instance, another way of using the first passage
time under the structural-form models [2, 13]. In this current study, we consider estima-
tion for the probability of joint default under Gaussian and Student’s ¢ copula models.
This estimation problem is then properly formulated as a lower tail probability under
multivariate normal and multivariate Student’s ¢ distributions on the assumption that
the cumulative distribution function (cdf) of each default time is invertible. Monte Carlo
simulation is suitable for high-dimensional computation because its convergence rate is
independent of dimension. To improve its accuracy, variance reduction [3, 14] is often

considered.



Importance sampling [1] is known as one crucial technique of variance reduction to es-
timate rare event probabilities. Based on the exponential twist for a selection of measure
change, Glasserman et al. [0, 7] studied importance sampling algorithms for portfolios risk
management. Market asset returns are assumed to be distributed by either multivariate
normal or multivariate Student’s t. As a result of portfolio losses using the delta-gamma
approximation, their exponential twisting parameters are one-dimensional. In contrast to
real-valued portfolio losses studied in [0, 7], our estimation for lower tail probability deals
with high-dimensional problems. We apply the exponential twisting to derive importance
sampling algorithms, but the total number of twisting parameters is the same as the total

number of defaultable assets.

The vector of exponential twisting parameters used in our importance sampling al-
gorithms satisfies a possibly large linear system, which is associated with the covariance
matrix defined in the multivariate normal or Student’s ¢ distribution. To explore the
performance of these stochastic algorithms, we conduct a variance analysis by means of
the large deviation theory and a truncation argument. Decay rates of the first and second
moments of estimators associated with importance sampling are approximated when tail
boundaries are scaled into rare event regimes. We show in an asymptotic sense that the
proposed importance sampling algorithms are indeed optimal. In simulation terms, these

algorithms are efficient [1] because their variance are zero asymptotically.

From the numerical integration point of view, it is a classical problem to calculate the
cdf value as a multiple integral when the joint density function is explicit. In cases of
multivariate normal and Student’s ¢, Genz and Brentz [9] developed a Quasi Monte Carlo
method to calculate cdf values. Their method were then commercialized as computational
schemes. For example in Matlab, mvncdf.m and mvtedf.m are able to compute cdf values
for multivariate normal and Student’s ¢, respectively. Hence, our importance sampling al-
gorithms for estimation of lower tail probabilities can be viewed as stochastic alternatives

to these classical schemes. Numerical comparisons are performed in this paper.

To demonstrate the flexibility of our algorithms, we show an application for estimation
of the loss density function given a credit portfolio. This can be viewed as a static version
of the counter-part dynamical model investigated by Carmona et al. [2]. They studied
the loss function estimation problem by means of the interacting particles system under
a first passage time model. See also [10] for estimating joint default probabilities under
the classical first passage time problem in finance by means of an importance sampling
technique. Note that in the later study, the lower tail probability cannot be formulated
as an explicit integral problem because the joint density of the hitting times of correlated

Brownian motions are not yet known explicitly in high dimension.

The organization of this paper is as follows. Section 2 provides motivation for estima-

tion of lower tail probabilities under multivariate normal and Student’s ¢ from the copula



method in credit risk. Section 3 presents derivations of our proposed importance sam-
pling estimators by exponential twist. Section 4 and 5 present several estimation results
of decay rates for the second moments of proposed importance sampling estimators, and
demonstrate numerical performance and their comparisons with Matlab codes mvncdf.m
and mvtedf.m. Section 6 presents some extends of our importance sampling algorithms

to estimate loss density functions of some credit portfolios.

2 Lower Tail Probability Estimation

Let d be the total number of defautable assets. We denote by 7; the default time of the
ith asset, 1 < i < d, and F;(t),0 < t < oo, its cdf. Assuming that each F;(t) is strictly

monotone, the ith default time can be sampled from

T, = Fz'_l(Ui)7 (1)
where each U; is a uniform-[0, 1] random variable. The copula method [3] is useful to
provide various correlation structures for these uniform variates (Uy,---,Uyg). Next, we

consider Gaussian copula and Student’s ¢ copula, and formulate the probability of multi-

ple defaults to the probability of lower tail.

A Gaussian copula model specifies each uniform variate U; by
U, =,(Z;) (2)

for 1 < i < d. The vector (Zy,---,Z4)7 is distributed by a multivariate normal and
T denotes the transpose. Each ®; denotes the distribution function of the ¢th normal
variate Z;. Hence, the correlation between default times 7; and 75,7 # j, depends upon
the correlation between normal variates Z; and Z; via composite functions FZ-_1<I>i and

Fj_lfbj. Suppose that each Z;,1 < i < d, admits a special decomposition:

Zi = piWo + /1 — p? W;, (3)

where W) is the common factor and each W; is a marginal factor. These Wy, Wy, --- , Wy
are assumed to be one-dimensional i.i.d. standard normal random variables with each
lpil < 1. A Gaussian factor copula model is defined to satisfy the decomposition (3). It
is particularly useful for model reduction because the total number of parameters in the
covariance matrix are reduced from the order of d? to d, as compared to ordinary Gaussian

copula models. This is beneficial to statistical estimation. See [3] for detailed discussions.

Analogously, a Student’s ¢ copula model specifies U; = t,(.S;), where each S;,i =1,--- ,d,
denotes a univariate Student’s ¢t with the degree of freedom v, and ¢, denotes its cdf. The
multivariate Student’s t S = (Sy,---,S4)7 considered here satisfies the decomposition

S =27/ %, where Z denotes a centered multivariate normal with the covariance matrix

4



3} in d dimension and Y denotes a univariate Chi square with the degree of freedom v.
The cdf of S is denoted by ts;,,. When each Z; has a similar decomposition as (3), this
model is called Student’s ¢ factor copula model. Some other definitions of multivariate

Student’s ¢ can be found in [18].

Given a set of fixed time horizon (771, - - - , Ty) for default times (71, - - - , 74) respectively, the
joint default event is defined as IT¢_, I(7; < T;). Substituting (2) into (1), each default event
{7 <T;} can be characterized by {Z; < ¢;} given ¢; := ®;'(F;(T;)). Under a Gaussian
copula model, the probability of joint default is equal to P = E {HfZIH(Zi < cz)} , or in
vector form

P=E{I(Z <C)}, (4)

where Z = (721,22, ,Z4)T and C = (c1,ca,--- ,¢q)T. Since the density function of a

multivariate normal is known explicitly, this lower tail probability can be presented as an

1 1
/ / —————exp <—ZTEIZ> dzq---dz, (5)
(2m)2|%|2 2

where we denote by z = (z1,---, 2z4)7.

integral form:

Likewise, in the case of Student’s ¢ copula model, the probability of joint default can be
defined as
P =E{I(5S <C)}, (6)

where S = (S1,S2,---,S4)T is a multivariate Student’s ¢ with covariance matrix ¥ and
with the degree of freedom v > 0, and C = (cy,--- ,¢cq)” denotes the (default) threshold
vector with each entry ¢; = t;,}(F;(T;)). Given the joint density function of S, the integral

form of this lower tail probability is known as

Ccd F v+d |E! 1 ey *U;d
/ / — 2z (1 + —2'¥" z) dzq---dz, (7)
T(%)( v
where we denote by z = (z1,---, 24)".

3 Importance Sampling by Exponential Twist

Here we present a method of importance sampling, namely exponential twist, for estima-
tion of probabilities defined in (4,6), or equivalently computation of cumulative integral
functions (5,7), respectively, on the left tail regions. The key assumption is that the joint
moment generating function of underlying variates or their transformations must be ex-
plicitly known. We now briefly review the importance sampling by exponential twist to
estimate the probability P(Z < C) = E{I(Z < C)} in the following.



Suppose that under a probability space (Q, F,P), the multivariate Z € R¢ has a density
function f. For simplicity, we assume that Z is continuous, f(z) > 0 for z € R¢, and its
moment generating function denoted by My (u) exists, where p = (u1,--- , uq)? denotes
a vector of parameters in the generating function. The exponential twist imposes a new

density function defined by
exp(p2) f(2)
fulz) = ——F"—F—— 8
for measure change. Under the new measure [P, defined from the Rodan-Nykodym deriva-
tive dP/dP,, = exp(pz)/Mz(p), the lower tail probability P(Z < C) can be expressed by

P =E, {]I(Z < C);;((ZZ)) } . (9)

Let Py(p) denote the second moment of I(Z < C)f(Z)/fu(Z) under the new mea-
sure P,,. That is Pa(p) = E, {I(Z < O)f*(Z)/f}(Z)}. It is easy to see that Py(u) =
E{l(Z <C)f(Z)/fu(Z)} under the original probability measure P. Substituting the
choice of f,(z) into P»(u), we obtain

Py(p) = Mz(WE{L(Z < C)exp(—pu"Z)}

< MyE{I(Z < C)exp(~4"O)}
< My(u) exp(—p"C), (10)
in which we assume that all ¢; and pu; for i = 1,--- ,d are negative numbers for the first

inequality to be held. Since the indicator function is bounded above by 1, the second

inequality is satisfied.

We intend to minimize the variance of I(Z < C)f(Z)/fu.(Z) shown in (18) over pu.
This task is reduced to minimize the second moment P,(u) because P; is actually u-
independent. It is a challenging problem to solve for the minimizer of P»(u) particularly
in high-dimensional cases. When the moment generating function is in exponential form,
it may appear that minimizing the logarithm of the upper bound (10) becomes tractable.
Thus, it provides a candidate for importance sampling. According to the first order condi-
tion, each partial derivative must be zero to solve for u. Let u* = (uf,- -+, u5)T admits the
solution of VIn(Myz(u*)) — u*T'C = 0 or equivalently for each component i € {1,--- ,d}
1 OMgz(p*)
Mz () Op;

In both multivariate normal and transformed Student’s ¢, it turns out these equations can

= Cj. (11)

be solved explicitly for p*.

It follows that the expected value of Z under the new probability measure P« is exactly the
threshold vector C'. This is confirmed by a direct calculation IF,«(Z;) = ffooo i fur(2i) dz;
using fy+(z) defined in (8) such that

1 OMz(w)

Mz(p*)  Op;
= G (12)

Eu*(zi) =




is obtained. The last equality comes from (11). Equation (12) reveals that “the expected
value of X under the new probability measure P, is equal to the threshold C.” From the
simulation point of view, this result is appealing because the rare event {X < C'} under
the original probability measure is no longer rare under this new measure P« associated
with the density function f,«. However, it still requires a qualitative check on whether

this choice of measure change is optimal or not.

3.1 Importance Sampling for Multivariate Normal Distri-

bution

Since the moment generating function of Z ~ N(0,%) is Mz(p) = exp (3p7Sp), it is

easy to solve for an optimal candidate
Yu*t=C, (13)

which results from Equation (11) for each ¢ = 1,--- ,d. In order to faciliate numerical
comparisons, a pseudo algorithm for estimation of a lower tail probability under a cen-

tered multivariate normal Z is provided below.

Algorithm 1: Estimation of lower tail probability under centered multivariate Normal

1. Given the distribution Z ~ N(0,X) and the lower threshold C' < 0, compute p* =
yte.

2. For each independent ith replication, ¢ = 1,--- ,m,
(a) Generate Z() = (Zfi), e 7ZC(;'))T from NV (C, ).
(b) Evaluate Mz (u*)exp (-7 Z20){Z0 < C}.

3. Compute the average of samples generated from (b) in Step 2.

3.1.1 Numerical Comparison with mvncdf.m

Homogeneous experiments are conducted to estimate the lower tail probability (4) given a
factor decomposition (3). That is, model parameters ps in the convariance matrix 3 and cs
in the threshold vector C' are chosen the same. For example in our numerical experiments,
we set p=p; =05and ¢c=c¢; = -2 for i =1,---,d. Numerical performance between
the basic Monte Carlo method, our importance sampling scheme, and a Matlab scheme
mvncdf.m are compared. This Matlab code is based on a quasi Monte Carlo method
developed in [9]. In Table 1, the dimension number d varies from 5 to 25, then 30, 50,
up to 125. (The maximal number 25 is set in the Matlab code, but there is no dimension
restriction for our importance sampling scheme.) Numerics, including sample means and
standard errors, generated from the proposed importance sampling scheme are roughly at
the same order of accuracy compared with those calculated from Matlab. Matlab often
performs better before d=?7 and the importance sampling outperforms for rest cases. The

total number of simulation for each numerical experiment is 75000. Note that on average
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the computing time of our algorithm is 7% less than the Matlab code. This is probably
due to repeated usage of a sequences of inverse functions of normal integrals in the Matlab

algorithm, while we only solves for a single linear system (13).

3.2 Importance Sampling for Multivariate Student’s ¢ Dis-

tribution

As discussed in (6), recall the setup of the estimation problem P = P(S < ('), where S =
(S1,-+,Sa)T ~ts, and C = (c1,-++ ,cq)T with each ¢; = t,;(F;(T;)) for i = 1,--- ,d.
That is, the factorization S = Z/ \/g is allowed, where Z denotes a centered multivariate
normal with the covariance matrix ¥ in d dimension, and Y denotes a univariate Chi
square with the degree of freedom v. Let AAT = 3 by the Cholesky decomposition
such that S = AW/\/g, where W = (W1, -+, Wy)T is N(0, I)-distributed. We define a

transformation X = Y /v (S—C). The tail event {S < C} is equal to {X < O} because the
Chi square Y is positive almost surely. Hence, the tail probability becomes P = ]P)(f( < 0).

As discussed in the derivation of importance sampling by exponential twist, we manage
to minimize the upper bound M g (p), similar to (10) with C' = 0, of the second moment
Py(11). We shall first investigate the moment generating function of X.

Lemma 1. Given a symmetric and positive definite covariance matriz 3 and the degree of

wT'sp—2uTC
v

freedom v, assume that the parameter vector p € R satisfy < 1. The moment

generating function of X is
1 - 2 - —v/2

Proof: Recall the transformation X = Lis-0)=-Xc+4 (ﬁW) Conditional

on the Chi square random variable Y, the moment generating function of X is
Mg (p)=E IE {exp (MTX) |YH
| Y
=E [exp (—MTC) +E
v

exp (\ / }V/MTAW) Y

r T TE
—E |exp <—Y“ €y “)}
1%

2v

1 - 2 - —v/2
=(1—-—p'Zp+—-p C .
1% v

We have used the moment generating functions of the multinormal variate W and the Chi

square Y separately in the last two lines. ]

From this explicit result, we are able to minimize the logarithm of M ¢ (). By the first or-
der condition VIn Mg () = 0, it is a direct calculation to obtain the solution p* = X~ C.



Table 1: Estimation of lower tail probability under Gaussian copula factor model.

Basic MC Importance Sampling Quasi MC mvnedf.m
d Mean SE Mean SE Mean SE
5 | 2.67TE-05 1.89E-05 | 1.37E-05 3.31E-07 | 1.40E-05 4.31E-08
6 - - 4.68E-06 1.33E-07 | 4.71E-06 3.86E-08
7 - - 1.89E-06  6.58E-08 | 1.86E-06 1.60E-08
8 - - 7.80E-07  3.02E-08 | 8.11E-07 1.13E-08
9 - - 4.00E-07 1.92E-08 | 3.70E-07 1.28E-08
10 - - 2.12E-07  1.08E-08 | 1.98E-07 4.41E-09
11 - - 1.06E-07  5.75E-09 | 1.16E-07  3.92E-09
12 - - 6.70E-08  4.42E-09 | 6.34E-08 1.74E-09
13 - - 4.02E-08 2.97E-09 | 3.78E-08 8.78E-10
14 - - 2.38E-08 1.75E-09 | 2.25E-08 8.65E-10
15 - - 1.59E-08  1.30E-09 | 1.49E-08 5.20E-10
16 - - 1.12E-08  1.25E-09 | 9.42E-09 2.63E-10
17 - - 7.21E-09 6.48E-10 | 6.84E-09 6.99E-10
18 - - 4.05E-09 3.80E-10 | 4.57E-09 2.88E-10
19 - - 3.65E-09  3.45E-10 | 3.42E-09 3.98E-10
20 - - 2.41E-09 2.64E-10 | 2.11E-09 1.18E-10
21 - - 2.08E-09 2.21E-10 | 1.72E-09 1.45E-10
22 - - 1.62E-09  2.00E-10 | 1.06E-09 8.50E-11
23 - - 1.06E-09 1.71E-10 | 1.00E-09 8.33E-11
24 - - 7.18E-10  7.79E-11 | 8.13E-10 1.41E-10
25 - - 5.64E-10  9.36E-11 | 5.39E-10 4.35E-11
30 - - 2.01E-10 4.03E-11 - -
50 - - 3.84E-12 1.53E-12 - -
75 - - 4.18E-13  1.83E-13 - -
100 - - 6.99E-14  3.41E-14 - -

Averaged CPU time in seconds: 1.47E-01, 1.82E-01, 1.69E-01, respectively, without dimensions

of 30 and beyond.



This result suggests a possibility to change measure. Note that the optimal p* fulfills au-
tomatically the assumptions (u*TE,u — 2M*TC) v = — (CTE_lC) /v < 1 in Lemma 1
because the covariance matrix X is positive definite. Thus the existence of the moment

generating function Mg (u*) is assured.

For the purpose of executing simulations, we need to understand what distributions of

underlying random variables including ¥ and W are under a new measure P,,.

Lemma 2. Under the prescribed measure, the original x2-distributed Y becomes a Gamma
random variable with with shape parameter v/2 and scale parameter 2/(1 —2a(p)), where
o) = (u'Su —2uTC)/(2v), and the original standard multivariate normal W becomes

a conditional normal with mean —y/ X AT 1 and variance I given Y.

v

voorf(r_2 Y
271 —2a(p)

WY ~ N(—\/TATM,Id>.

Proof: From the definition of f{(y) = %Eu [[(Y <wy)] and the choice of the Radon-
Nikodym derivative dP,/dP = exp(,uTX)/MX (1)

<
My (1) v V7o

Again, using condition on Y and the moment generating function of W,

d

f{;(?ﬁ = @E

d [1(Y <y)

_ Y2 =Y _X T X T

exp (a(p)y
W) 1 ),
- - (1= 2a(u))~
where a(u) = % By the explicit density function of Y ~ x2, we derive the
density of Y

is obtained. A direct calculation of this derivative gives fi(y) =

R T T ey (R
fy) = (1 - 2a(u)> T(v/2) “P <2/(1 — 204(#))) ’

under the new measure P,.

Given Y, the components of (W7,---,Wy) are independent normal random variables,
and the mean of W changes to —\/%AT,u. These can be obtained from the following

separation

Sy
Mg(u) My (a(p)  fw '
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so that the conditional density

Py (W) = fw(w) exp (07X = a(u)Y)

o[ B )

T e

by using definitions of X, a(u), and the completion of squares. O

Algorithm 2: Estimation of lower tail probability under multivariate Student’s t

1. Given the distribution S ~ t5, , and the lower threshold C' < 0, compute pu* = v-1lC

2. For each independent ith replication, ¢ =1,--- ,m,
(a) Generate Y from I (%7 #(,ﬁ)) , where a(p*) = “*275“* - “*VTC'

(b) Given such Y®), generate W@ from N(—/Y/vA~1C,I4xq)

(c) Set XO = v /(AW /10 )
(d) Evaluate the ith sample value MX(M*)e_“* TX(i)]I{X(i) <0}

3. Compute the average of samples generated from (d) in Step 2.

3.2.1 Numerical Comparison with mvtcdf.m

We use Algorithm 2 to compare with the Matlab code mvtcdf.m. Numerics are reported
in Table 2 for a small degree of freedom 3 because this order one regime is considered to
generate heavy tails. Homogeneous model parameters are chosen as p = p; = 0.5 in the
convariance matrix 3 and ¢ = ¢; = =2 for ¢ = 1,--- ,d in the threshold vector C. The
total number of simulation for each numerical experiment is 75000. We denote IS by our
proposed importance sampling. It can be seen that even in the regime of a small degree
of freedom and low dimension, our importance sampling outperforms, and its averaged

computing time is 7% less than Matlab.

4 Asymptotic Variance Analysis for Multivariate

Normal

Next we focus on the theory of the estimation problem (4) in high dimension. Let matrix
A satisfy the Cholesky decomposition of a covariance matrix ¥ = AAT so that AW ~
N(0,%), and C' < 0 be the threshold vector. A scale « is introduced to define the scaled
lower tail probability by

Pi(a) =E{I(AW < aC)}, (14)

where W is assumed to be d-dimensional independent normal variate. As discussed in
Section 3.1, let P, be the new probability measure so that X is distributed by N (p, X)

11



Table 2: Estimation of lower tail probability under Student-T factor copula model.

Basic MC Importance Sampling Quasi MC mvtcdf.m
d Mean SE Mean SE Mean SE
5 | 2.25E-03 1.73E-04 | 1.91E-03  3.00E-05 | 1.90E-03 2.02E-05
6 | 1.06E-03 1.18E-04 | 1.16E-03  2.19E-05 | 1.18E-03 2.63E-05
7 1 9.33E-04 1.12E-04 | 7.83E-04 1.72E-05 | 7.47E-04 1.41E-05
8 | 4.53E-04 T7.77TE-05 | 4.96E-04 1.30E-05 | 5.21E-04 2.50E-05
9 | 4.27E-04 7.54E-05 | 3.63E-04 1.08E-05 | 3.55E-04 1.27E-05
10 | 2.93E-04 6.25E-05 | 2.84E-04 9.16E-06 | 2.69E-04 8.42E-06
11 | 2.27E-04 5.50E-05 | 2.02E-04 7.45E-06 | 1.88E-04 8.01E-06
12 | 1.87E-04 4.99E-05 | 1.57E-04 6.40E-06 | 1.56E-04 7.72E-06
13 | 1.47E-04 4.42E-05 | 1.28E-04 5.96E-06 | 1.21E-04 6.71E-06
14 | 8.00E-05 3.27E-05 | 1.21E-04 5.75E-06 | 1.08E-04 6.67E-06
15 | 5.33E-05 2.67E-05 | 8.97E-05 4.75E-06 | 8.12E-05 4.38E-06
16 | 1.47E-04 4.42E-05 | 6.21E-05 3.67E-06 | 6.81E-05 6.92E-06
17 | 6.67E-05 2.98E-05 | 5.39E-05 3.49E-06 | 6.03E-05 9.26E-06
18 | 2.67E-05 1.89E-05 | 4.48E-05 3.15E-06 | 5.65E-05 7.23E-06
19 | 1.33E-05 1.33E-05 | 4.11E-05 2.93E-06 | 3.86E-05 5.38E-06
20 | 2.67E-05 1.89E-05 | 2.94E-05 2.37E-06 | 3.56E-05 4.90E-06
21 | 5.33E-05 2.67E-05 | 2.76E-05  2.30E-06 | 3.07E-05 4.53E-06
22 | 4.00E-05 2.31E-05 | 2.39E-05 2.18E-06 | 2.53E-05 4.27E-06
23 - - 2.19E-05  2.22E-06 | 2.26E-05 4.32E-06
24 | 4.00E-05 2.31E-05 | 1.94E-05 2.07E-06 | 1.47E-05 2.42E-06
25 | 4.00E-05 2.31E-05 | 1.71E-05 1.87E-06 | 1.28E-05 3.17E-06
30 - - 1.07E-05  1.48E-06 - -
50 - - 1.76E-06  4.80E-07 - -
75 - - 6.64E-07  3.09E-07 - -
100 - - 2.54E-07  1.23E-07 - -

Averaged CPU time in seconds: 1.60E-01, 3.87E-01, 2.34E-01, respectively, without dimensions

of 30 and 50.
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under P, and Pi(a) = E, {]I(AW < Val) %} . This shifted mean p is a vector of size

d. The second moment of the weighted random variable is defined as

2
Py(a) =E, { <]I(AW <+VaC) £> } : (15)

It is shown below the optimal choice of p is p* = /a C in the asymptotic sense, so that
the second moment is approximately the square of the tail probability.

Theorem 1. Assume that the scale o is a positive number, each element in the vector
C € R? is negative, W ~ N(0, 1), and the lower triangular matriz A satisfies the Cholesky
decomposition of a given covariace matriz AAT = X. We obtain the following asymptotic

approrimations:

1 1
lim —log P2(a) =2 lim —log Pi(a) = —CT 271 C.

a—00 (Y a—0o0 (X

That tmplies that the importance sampling scheme
Pi(a) =E g0 {I(X < VaC) exp(2/aC"S7'X +aCTE7'0)},

where X := AW ~ N(/aC,X) to estimate the lower tail probability is asymptotically

optimal.

Proof: Note
P(X < C)=Eq,. 0 [[(X <O)] (16)

= E(uy a)

d 2
(AW < O) He—mwﬁ‘?] :
i=1

where the lowerscript denotes the corresponding probability measure, under which the

mean of the underlying random vector is shown.

The second moment of the last equation is

d d
E(ﬂla"'aﬂd) I(AW < C) | |€ ZMWz] | |@Nz
=1 i=1
d 2
=E( o =) [LAW < C)] eXi=1 s

d
=Eq,....0) [[(A(W — p) < C)] eXi=1 10

Now we choose pt = (p1,---,puq)T which solves Ay = C so that Z;i:l p2 =ty =
CT(AHTA-1C = CTL~1C, and the second moment becomes

Eo... o) [1 (AW < 2C)] ¢ '€, (17)

Introducing a rescaled C' by /nC for n being a large positive integer. Given this new
scaled \/nC'. Let’s denote the first and second moments defined in (16) and (17) by Mj(n)

13



and Ma(n), respectively. That is

where X is ii.d. as X, and

My(n) = Eq,... o []1 (\}ﬁx < 2C>

By the large deviation principle for Gaussian variates [1], we obtain

Ty—1
enC % C'

1 1
~log My(n) — = I(C) = —EcTz—lc

1
—log My(n) — — I(2C) + CTx~1C
n
=-c's7'c.
.1 .1 . :
Hence 2 lim —log Mi(n) = lim —log Ms(n). That is, we prove that the proposed im-
n—oo N, n—oo n

portance sampling is asymptoticaly optimal or called efficient.

Since Pj(«) is strictly decreasing in «, we can generalize estimates in Theorem 1 to the

case with continuous variable a
1 1 re1
ElogPl(a) — —I(C) = —§C xC
1
o log Py(a) — — I(20) + CTx"1C
=-c’'s"'c,

when « is large enough.

5 Asymptotic Variance Analysis for Multivariate
Student’s t

_ AW . T - . . y .
Recall that S = N (S1, Sa, ,S4)" is a multivariate Student’s t random variable

with covariance matrix ¥, where AA” = ¥ by Cholesky decomposition, W ~ N(0, I)
and Y is a Chi-square random variable with degree of freedom v. Denote C' < 0 the

threshold n x 1-vector. We are interested in estimating the lower tail probability

P, = E[I(S<C)

E |1 < o

VY/v

14



. . v _ Y AW
By defining a transformation X = - e

nential change of measure gives the following estimator

— C’), the importance sampling by an expo-

(1+ CT€710)7V/2

exp(-X-1C X)

P (C,v) = [I(X <0)

The second moment of this estimator is

B B 1 cTy-1¢ 1//2
PHS(C,v)=E |I(X <0) I+ =) ,
exp(-X-1C X)

which can be further simplified by

crs-1e\ P 3y
Ps = <1 + ) E |exp (cTzlc I AW < 2
v 2v
. . . CTE 1o V/2
Note that the coefficient in front of the expectation (1 + ) is equal to E[exp(—3
then we can rewrite PJ° by
Y Y
PIS = E |exp <0T2—10> I (AW < 2\/>c> (19)
v v

To facilitate the study of small probabilities, we introduce a scale a > 0 and multiple it
with the default threshold vector C' < 0 so that when the default threshold vector /aC
becomes negatively large, the lower tail probability should be small. One can study its
decaying behavior by means of large deviation. Introduce new notations Pj(«,v;C) :=
Pi(y/aC,v) and PJ%(a,v;C) = P{(a C,v). Then we have the following result.

AW

VY/v

variable with covariance matriz ¥, where AAT = ¥ by Cholesky decomposition, Z ~

Theorem 2. Let S = = (51,52, ,Sd)T be a multivariate Student’s t random

N(0,1;) and Y is a Chi-square random variable with degree of freedom v. Assume that

(1) the default threshold satisfies /o C < 0, for a being a positive scale parameter and
C < 0 the threshold d x 1-vector

(2) the degree of freedom v satisfy laCTX™1C /v < 1,
then

1 Tyt
lim lim —InPi(a,v;C) = —u.

aA—o0 V—00 (X 2

1
lim lim —InP{%(a,v;C) = —CTE1C.

a—00 V—00 (X

)CTE_lc],

Proof: From the result that Student’s ¢ converges to one, i.e., % — 1, limy 00 Pi(l,v;C) =
E[I(AW < {/a C)]. Further use the result in Theorem 1, we obtain lim, s lim, s é In P (a,v;C) =

. Analogously, asymptotic result for P{ S can be obtained.

_ Tyl
2

This result shows that the proposed importance sampling is indeed asymptotically

optimal for variance reduction when the degree of freedom is large enough.
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Throughout this section, we say a function f(n) ~ p, as n large enough if there exist
some positive constants m, M such that for n large enough

mSMSM.

Py

Next we summarize our main theoretical results.

Theorem 1. Decay rate estimations:
1. Decay Rate of the First Moment: fixed v > 0,

AW
I <\/Y7/1/ < \/&C>

~ O[fz//Q

E

)

for large a.

2. Decay Rate of Second Moment - Conditional Monte Carlo: fixed v > 0,

2
E (IE ]I(AW<\/&C \/f) ) ~a 2

3. Decay Rate of Second Moment - Importance Sampling: fixed v > 0,

E [exp <aYC'TE_IC')]I <AW < 2OCYC>} ~a Y,
v v

Y

for large a.

for large a.

Theorem 2. Decay rate estimations: For @ large enough, there exist constant E1, Fo > 1
v

such that

1. Decay Rate of the First Moment:

iEf”/QSE[H<\}4%<J&C>

2. Decay Rate of Second Moment - Conditional Monte Carlo:

2
]I(AW<\/O‘Y C) ) < B2
14

3. Decay Rate of Second Moment - Importance Sampling:
1 Ty-10\ /2 Y Y
E;V§<1+O‘CC> E exp<3a CT210>I[ AW <24/ 2= ¢
v v 2v v

The proof of these two theorems is shown in Appendix.

< EZ_V/Q-

|
- E[Y?<E <E Y

14

< E;y".
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6 An Application: Nth-to-Default Probability Es-
timation

In the application of pricing basket default swaps, it often needs to deal with nth-to-
default probability given d-dimensional assets. For example, the evaluation of default leg
is defined as

The mechanism of a k*'-to-default swap resembles that of an insurance. From the
protection buyer’s viewpoint (the protection leg), periodical premium payments are made
until some credit events happen; meanwhile, swap issuer needs to compensate the non-
recovered part! of the reference entities’ notional amounts® (the default leg). Pricing a
BDS is equivalent to determining the fair premium a BDS buyer needs to pay. Under
risk-neutral measure, the fair premium is determined by equating the expected cash flows
bilaterally.

Here we introduce some notations and assumptions of our pricing model.
e n: Number of names in one basket, usually 5 or 6.

e T Terminal date of a BDS contract.

e R;: Recovery rate of the ith underlying asset.

e M;: Notional amount, or face value of ith obligator.

o Nj_1,j,7=1,2,---,N: The time increment t; —t;_;. The market convention is

0.25 year, so we assume quarterly payment.
e h;: Hazard rate of the ith obligator.
e 7;: Default time of the ith company.

e B(0,7): exp (— [] r(u)du), the discount factor, (or price of zero coupon bond) where

r(-) denotes risk free interest rate.
In addition, I(.) stands for the Dirac function and prem is the fair premium. The
cashflow when k" default takes place (default leg) is
DL=E{(1-R)x M x B(0,7)xI(r<T)}, (20)

where E is the expectation under risk neutral measure.

On the other hand, the cashflow when obligators do not default (protection leg) is

N
PL=E{> Aj1;xMxpremx B(0,t;) x I(r > t;) . (21)
j=1
We equate the both sides of (20) and (21) and formulate the unknown premium:
E{(1-R)x B(0,7) xI(r<T)}

. (22)
E{S0 A x B0,4) < I(m > 1) }

prem =

1Often called Loss Given Default (LGD), which might be time-varying and correlated to some macroeconomic

conditions.
2In homogeneous basket, these notional amounts are assumed to be identical.
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To be more precise, we take accrued interests into considerations, modifying (21) by:

N

—ti_
PL =EQ :(Zitflaj_w) M xsxB0,7)xI(ti.y <7<t;)p,  (23)
o Tt

when defaults happen between two payment dates.

Next, in (20) to estimate default leg value, we assume the risk-free interest rate is zero
and it is for simplicity. Thus the value of default leg is reduced to the estimation of the
nth-to-default probability:

Pk)=P(m, <T), (24)

where 7(k) is the kth order statistic of default times {71, 72, -+ ,74}. Note that since for
each i € {1,--- ,d},7; = F71 (®(X;)) and functions F' and ® are monotone, the ith or-
der statistic in 7s is preserved by the ith order statistic in X. Therefore, P (7(k) < T) =
P(rx(k) <c).

Our importance sampling algorithms to estimate the probability of order statistics for

multivariate normal and Student’s ¢ random variables are simply easy generalization of

previously proposed importance sampling algorithms. Next, we present numerical results.

6.1 Numerical Comparison

Figure 1: Estimation for nth-to-default Probability of Multivariate Normal given p = 0.5 and
the total number of simulation is m = 100000.

In Figure 1 and Figure 2, we estimate a set of nth-to-default probabilities for n €
{1,2,---,d} under Gaussian and Student’t distributions, respectively. The model param-
eters and the total number of simulation are chosen the same as in Sections 3.1.1 and

3.2.1, respectively. Note that our importance sampling algorithms to estimate these order

18



statistic probabilities are simple generalization of previously proposed algorithms; while
there is no other (commercial) algorithms developed to estimate these quantities, to the

best of our knowledge.

From Figures 1 and 2, it is observed that the order-statistic probabilities fluctuates more
under Student’s ¢ copula than the Gaussian copula. This is because the Chi-square random
variable provides extra variability so that the estimator is more flexible than the one under

Gaussian copula.

Student's t
10" T T T T T

Figure 2: Estimation for nth-to-default Probability of Multivariate Student t given p = 0.5,
v =3 and m = 200000.

7 Conclusion

Motivated from Gaussian and Student’s ¢ copula models in credit risk, importance sam-
pling algorithms are proposed to estimate lower tail probabilities of multivariate normal
and Student’s t. These algorithms are stochastic alternatives to other deterministic based
algorithms. For instance, see Matlab codes mwvncdf.m and mutcdf.m. Moreover, we show
that the proposed algorithms are asymptotically optimal by means of the large devia-
tion principle and a truncation argument. The flexibility of these stochastic algorithms
is demonstrated by a generalization to treat the problem of estimating order statistics
(nth-to-default) of a credit portfolio.

A Proof of Theorem 1 and Theorem 2

separated into the following results in this section. Recall that using the technique of

large deviation, we know that

lim L logE[I(AW < va C)] = —% cTsle.

a—00 (X
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This implies that for € > 0, there exists A > 0 such that for a > A,
1 1
exp <— (2 cTs=1c + 6> a> <E [I(AW < Va C)] < exp <— (2 cTs=lo - 5> oz) .
(25)

Lemma 3. Let Y be a Chi-square distributed random wvariable with degree of freedom v

and let o and F' be constant independent of v.

1. If F < «/3, then for large enough «,

P <Y < ”F) ~ a2,
(8]

—v/2
MY<D~1(;> .
14

2. IfF <2,

Proof: It is known that the cumulative distribution function of Y is given by
D/2
P(Y < D) = Kg/ t2 et dt, (26)
0

1. Consider D = vF/a.

(a) v =2: (~) It is easy to see that if « is large,

D/2 D F
/ e*tdt:(l—e*D/z)N—:V—ofl,
0 2 2

(b) “<”: For the case v > 3, since the function tz-le~! is increasing on (0,D/2),

D/2 v/2 v/2
/ / ts e tat < B e D2 < E a V2,
; =7 =\ 72

For the case v = 1, using the integration by part, we get

D/2 D/2
/ t712e7tdt = (2D) /27 P/2 4 2/ 27t dt < Ka™Y2,
0 0

when « is large enough.

(c) “>”: For the case v = 1, since the function t~1/2e~* is decreasing in t and

e~ P2 > some positive constant,

D/2 —-1/2
/ / =2t gt > 2 . Q e P2 > pa~1/2,
0 -2 2 -

For the case v > 3, by integration by parts, we have

D/2 v/2
/ tzle tdt > 2 <12)> e~ D/2 > ka~V/2.
0

v

Combing the above three cases, we obtain the desired result.
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2. Since P(Y < F') is monotone in v if F' < 2, we consider here only the case where

v = 2m. In this case,

=0
F/2,.m m—1 ; m
e'/cx x x
Using the Taylor expansion e* — < E — < e*—— forz € [0, F/2]. Thus,
m! 7! m!
=0

we have

—F/2 m F/2 m
€ E < / tmle=t gt < i E ,
m 2 0 m \ 2

which leads to our results. For the general case, using the monotonicity property of
F/2
/ t" et dt in v.
0

A.1 Proof of Theorem 1

1. For fixed v and constant F' > A,

H(\‘;}/K/y<\/ac>
_ E[]E[H(AW<\/QY7/’/C)’Y]H<Y>VQF>}

+E[E{H(AW<WO)‘Y}]I(Y§VF>].

a

E

Y
On set set {Y > vF/a}, we have % S F > A. Since W is a Gaussian vector, by
v

(25) and the moment generating function of chi-square distribution
E [IE 1(aw < /ay VC)M]I<Y> ”F>]
o

(- (sers ) ) D)

—v/2
< (1+(CTE—IC—25) %) 2 a2,

IN

when « is large enough. Moreover, it is not difficult to see that
F F

IP’<Y§”> IE[IE []I(AW<\/aY/V C)MH<Y§”)]
o o

F F
E [H (AW < aD/v C) i <Y < ”>] — constant P (Y < ”>
o
due to the independence of Z and Y. By Lemma 3

E[E[H(AW<WC)(Y}H<Y§”@F>] ~P<Y§”F) ~a 2,

v

v

(0%

Hence, we get the desired result.
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2. Consider

=

[
(e fr (<o) Y')H (=)
+E(

= [+ say.

A similar argument as in the first part of the proof of Proposition ??, we get

I~P <Y < ”F> ~a V2,
(6%

Moreover, we have

<exp (— <; oTs~lo - 5> O;Y>>2]I(Y > ”f)] < (1 120710 - 2¢) %)_V/2.

—v/2

0<I<E

Hence, if o is large enough, we get that 0 <II< K«

-
E <E [11 <X<\/O‘Y C) ) ~a V2,
1%
exp <3;‘Y Ty~ 10) (AW <o)X C’)
14 14

exp <3QY cty~ 10)

H(AWQ,/WC) 1(v>")
2u v a
(AW<2\/O;Y C)

Due to the independence of Z and Y and the large deviation, we see that

. Thus, we can get

Y

E

+ +E Y

Y
exp (32(); CTZ_lC) E

= I+ 11, say.

= a5 el (ee-) )
2v 2 v
_ T—1 —v/2
= (1+(cTzlC-8)2)
Thus,

Ty—1 v/2 .

(1 + W) I< (1 +(CTS7I0 - &) 9) ~a”!
v v

Moreover, using a similar argument as in Proposition 77,

F F
IT < exp (32 CTz—lc) P <Y < ”) ~a 2,

o
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which implies that
aCTy-10\ /?
(1)
v
Hence, the value (?7) has upper bound Ka~”. Furthermore, since the mean of joint

v/2

default is approximated to a="/“, we can get the lower bound is also Ka™".

A.2 Proof of Theorem 2

1. Fork—1<g<kandaconstant F,
v

AW
]I(\/YTV<\/&C>

- E[E[H(AW<\/WC’))Y}H(Y>F)]+E[E[H<AW<\/WC)‘Y}H(YSF)}.

Using a similar argument, we have

E

E[E[1(AW < aV/w O)|Y]1(v > F)] < (1+(CTs e - 2¢) 9)_V/2 < MM,

14

and

]E[E []I(AW< \/aT/uC)‘Y}]I(YgF)} ~P(Y < F)~ = M2

14

This leads to our results.
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In credit risk modeling, Gaussian and Student’ s $t$ variates arise primarily from

the copula method to retain certain correlation structures among defaultable
assets. We propose efficient importance sampling algorithms to estimate lower tail
probabilities of these two variates in any finite dimension. Variances of
importance sampling estimators are shown asymptotically optimal by means of the
large deviation theory and a truncation argument. Numerical comparisons with
commercial codes, such as mvncdf.m and mvtcdf.m in Matlab, demonstrate robustness
and efficiency of our proposed algorithms. Moreover, the flexibility of these
algorithms can be seen from an application of probability estimation for the

$n$th-to-default, i.e., the $n$th order statistic, given a credit portfolio.
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