标题: 多视图之三维景物重建视觉法
Multi-View Vision Based Method for 3D Scene Reconstruction
作者: 陈稔
CHEN ZEN
国立交通大学资讯工程学系(所)
关键字: 多视图影像;特征对应点;相机校正;稠密式三维重建;multi-view reconstruction;feature correspondences;camera interior or exterior calibration;dense 3D reconstruction.
公开日期: 2010
摘要: 本研究计画预计在二年期间内发展一系列的电脑视觉技术,來研发透过多张影像來
进行场景的三维稠密式几何重建,而这些输入影像可能是利用许多布置于景物上方圆顶
形架上之众多相机所拍摄,或是利用单一相机于场景中移动所拍摄。此外这些影像或视
图可以是已校正过或是未校正过。
第一年的研究计画将利用单一相机來拍摄,并进行多视图稠密式户外场景的重建。
在此假设相机的内部參數是已知且在拍摄时固定不变。然而因为相机的外部參數是未知
的,因此需要对外部參數进行估算。在估算之前,必须先得到足够數量的可靠对应点。
经由我们对于具有仿射不变性所撷取的特征点中,可以得到一些唯一对应的特征点。至
于若需要其他更多的点对应,可以针对已得的唯一对应特征点找最近的特征点用。利用
这些特征点可用多视图矩阵分解法得到相机的外部參數与特征点的三维座标。为了排除
可能在上述相机參數估测时发生只找到的区域性的最小值,将再利用模拟退火法搭配直
交实验设计法,以前述方法的解当做初始解來进行统计搜寻,藉以得到全域的參數估测
最佳解。此时就能使用得到的可靠相机间极线几何关系,解决户外人工场景中大量的重
覆性图样间的可能错误匹配。最后则如同第一年计画进行稠密式的物体几何模型重建。
第二年提出的计画则为利用未校正影像进行多视图三维重建。以今日之手持數位摄
影机进行变焦拍摄十分普遍,取得的影像就是未校正过。我们尝试分析相机内部參數无
变动与有变动兩种影像对重建工作精准度之影响。兩种影像都先用多视图矩阵分解法求
得投射空间的三维场景模型,再试图用兩种可能方法将三维模型由投射空间转换至欧基
理德空间。其中一种是利用场景知識如三组以上的明显互相垂直线条组合资讯來做,另
一种是用自动校正技术來做。此外我们也要研究解决在三维重建过程中会遇到的影像杂
讯、遗失点与外來点等问题,以进而提升三维重建模型的精准度。
The two-year research project addresses a series of computer vision techniques for
reconstructing 3D dense scenes from plenty of images taken by either a large number of
fixed cameras scattering around the scene or a single camera moving around the scene. In
addition, the images can be either calibrated or uncalibrated.
In the first-year project a multi-view dense outdoor scene reconstruction is conducted
using a single camera, assuming its intrinsic camera parameters are known and fixed
throughout the picture shooting. Since the camera extrinsic parameters are unknown in this
camera set-up, we need to estimate these parameters. Before the estimation a sufficient
number of reliable corresponding point pairs have to be obtained first. This is made possible
through our affine-invariant interest point detector in which some uniquely matched point
pairs can be found. Besides, more point pairs are obtained through the use of proximity
measure on the interest points with respect to the already uniquely matched point pairs. The
multi-view factorization method is used to derive the camera extrinsic parameters and 3D
interest points. To deal with possible local minimum traps in the parameter estimation a
global optimal solution to the parameter estimation the above solution is used as an initial
solution in a stochastic search method making use of the simulated annealing procedure with
the aid of the orthogonal experimental design for the solution space. Consequently, the
reliable eipolar geometry relationships among the cameras can be obtained and the
relationships will be used to disambiguate the similar structure patterns abundant in the
outdoor man-made scene. Finally, a dense reconstruction can be done in the same way as
given in the first-year project.
The second-year project will address the multi-view 3D reconstruction using
uncalibrated images. The uncalibrated images are quite common in the nowadays hand-held
digital camera shooting during which the lens zooming function is likely activated. We shall
study the effect of the change in the camera intrinsic parameters on the reconstruction
accuracy. For the group of pictures captured with or without the change in the intrinsic
parameters we apply the multi-view factorization method to obtain a projective 3D scene
model, and then two possible ways of transforming the projective reconstruction to a
Euclidean reconstruction will be proposed: one using the scene prior knowledge and one
using the autocalibration. At the same time, we shall study how to deal with the image noise,
missing points, and outliers as a whole during the multi-view reconstruction process so that
more accurate reconstruction can be achieved.
官方说明文件#: NSC99-2221-E009-129-MY2
URI: http://hdl.handle.net/11536/100476
https://www.grb.gov.tw/search/planDetail?id=2114399&docId=337980
显示于类别:Research Plans