Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Chi-Hsu | en_US |
dc.contributor.author | Chen, Pin-Cheng | en_US |
dc.contributor.author | Lin, Ping-Zong | en_US |
dc.contributor.author | Lee, Tsu-Tian | en_US |
dc.date.accessioned | 2014-12-08T15:02:33Z | - |
dc.date.available | 2014-12-08T15:02:33Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.isbn | 978-1-4244-4115-0 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/1208 | - |
dc.description.abstract | In this paper, a new dynamic neural network based on the Hopfield neural network is proposed to perform the nonlinear system identification. Convergent analysis is performed by the Lyapunov-like criterion to guarantee the error convergence during identification. Simulation results demonstrate that the proposed dynamic neural network trained by the Lyapunov approach can obtain good identifted performance. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | system identification | en_US |
dc.subject | dynamic neural network | en_US |
dc.subject | Hopfield neural network | en_US |
dc.subject | Lyapunov criterion | en_US |
dc.title | A Dynamic Neural Network Model for Nonlinear System Identification | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | PROCEEDINGS OF THE 2009 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION | en_US |
dc.citation.spage | 440 | en_US |
dc.citation.epage | 441 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000274330000084 | - |
Appears in Collections: | Conferences Paper |