Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Chi-Hsuen_US
dc.contributor.authorChen, Pin-Chengen_US
dc.contributor.authorLin, Ping-Zongen_US
dc.contributor.authorLee, Tsu-Tianen_US
dc.date.accessioned2014-12-08T15:02:33Z-
dc.date.available2014-12-08T15:02:33Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-4115-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/1208-
dc.description.abstractIn this paper, a new dynamic neural network based on the Hopfield neural network is proposed to perform the nonlinear system identification. Convergent analysis is performed by the Lyapunov-like criterion to guarantee the error convergence during identification. Simulation results demonstrate that the proposed dynamic neural network trained by the Lyapunov approach can obtain good identifted performance.en_US
dc.language.isoen_USen_US
dc.subjectsystem identificationen_US
dc.subjectdynamic neural networken_US
dc.subjectHopfield neural networken_US
dc.subjectLyapunov criterionen_US
dc.titleA Dynamic Neural Network Model for Nonlinear System Identificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2009 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATIONen_US
dc.citation.spage440en_US
dc.citation.epage441en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000274330000084-
Appears in Collections:Conferences Paper