完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSu, CTen_US
dc.contributor.authorHsu, JHen_US
dc.date.accessioned2014-12-08T15:16:58Z-
dc.date.available2014-12-08T15:16:58Z-
dc.date.issued2006-04-01en_US
dc.identifier.issn0305-0483en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.omega.2004.08.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/12421-
dc.description.abstractDespite their diverse applications in many domains, the variable precision rough sets (VPRS) model lacks a feasible method to determine a precision parameter (beta) value to control the choice of beta-reducts. In this study we propose an effective method to find the beta-reducts. First, we calculate a precision parameter value to find the subsets of information system that are based on the least upper bound of the data misclassification error. Next, we measure the quality of classification and remove redundant attributes from each subset. We use a simple example to explain this method and even a real-world example is analyzed. Comparing the implementation results from the proposed method with the neural network approach, our proposed method demonstrates a better performance. (c) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectVPRS modelen_US
dc.subjectbeta-reducten_US
dc.subjectprecision parameteren_US
dc.subjectneural networksen_US
dc.titlePrecision parameter in the variable precision rough sets model: an applicationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.omega.2004.08.005en_US
dc.identifier.journalOMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCEen_US
dc.citation.volume34en_US
dc.citation.issue2en_US
dc.citation.spage149en_US
dc.citation.epage157en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000233386000004-
dc.citation.woscount42-
顯示於類別:期刊論文


文件中的檔案:

  1. 000233386000004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。