标题: 利用搜寻隐藏图作组合群试问题的研究
A Study of Complex Group Testing via Learning Hidden Graphs
作者: 施智怀
Shih, Chih-Huai
傅恒霖
Fu, Hung-Lin
应用数学系所
关键字: 搜寻隐藏图;组合群试;抑制模型;learning hidden graph;complex group testing;inhibitor model
公开日期: 2015
摘要: 在传统群试(classical group testing) 里,给定一个群体N 和一
个收集所有正物质的未知子集合D,其目标是通过询问“N 中的一个子集是否包含一个正物质” 来确定D。这个问题已经被应用在很多领域且产生不同型态的模型跟问题,例如组合群试(complex group testing)、门槛群试(threshold group testing)和群试抑制模型(Inhibitor model)。
一般而言,群试演算法可以大致归类成两种类型: 逐步型(sequential) 和非调整型(non-adaptive)。逐步演算法中的测试是逐一进行的,而且每个测试是可以依据前面的测试结果来设计。非调整型演算法中的所有测试一开始就已经决定,因此每个测试的设计过程彼此互相独立,虽然整体来看还是要具备有好的性质。介于逐步和非调整型演算法之间,还有一种s 阶段的演算法,其中各阶段是逐步的,而每阶段中的试验是同步
的。
组合群试可以设定成通过边检测试验来重建隐藏超图的问题,其中每一个试验给的讯息是一组点的子集合是否包含图形中的一条边。在本论文中,我们首先重建一些有特别结构的隐藏图,包含汉米尔顿圈(Hamiltonian cycle)、配对图(matching)、星图(star) 或局部完全图(clique)。我们提供需要较少试验次数的逐步演算法,然后提供新的理论下界并给出
一个具有高效率的逐步算演算法来重建n 个顶点和m 条边的一般图。最后,我们扩展一般图的结果,并提供一个逐步演算法来重建隐藏的r-均衡超图。
在应用面来说,重建隐藏超图有助于我们解决门槛群试问题。本文中,我们的方法是藉由重建超图来解决没有间隙的门槛问题,且此方法已经达到理论下界。我们也可以考虑门槛群试在k-抑制模型上的问题,这是一种由门槛群试和抑制模型自然结合而成的模型。然后,我们提供非调整型演算法去克服此种模型,且允许试验错误的发生。此外,我们提供了一个两
阶段的演算法,以确定所有的抑制物,并找到正物质集合的一个g-逼近集S。此种S满足|S\D|<=g和|S\D|<=g,这里的g表示门槛的距离、D为收集所有正物质的子集合。
In classical group testing, one is given a population N and an unknown subset D\N of positive items, and the goal is to determine D by asking queries of the type ``whether a subset of N contains a positive item". The problem has been applied to many fields and generates different type of models and problems, such as complex group testing, threshold group testing, and the inhibitor model.

In general, group testing algorithm can be roughly classified into two types: sequential and nonadaptive. A sequential (or adaptive) algorithm conducts tests sequentially and each test may depend on the outcome of previous tests. A nonadaptive algorithm designs all the tests beforehand and thus each test is independent of the outcomes of other tests. Between the sequential and nonadaptive algorithms, there are the s-stage algorithms where stages are sequential and tests in a stage are parallel.

The complex model of group testing can be formulated as a problem of learning a hidden hypergraph by edge-detecting queries, each of which tells whether a set of vertices induces an edge of the hidden graph or not. In this thesis, we first reconstruct some hidden graphs of particular structure, including Hamiltonian cycles, matchings, stars, and cliques. We provide fully adaptive algorithms that reduce the number of queries needed. Then we provide a new information-theoretic lower bound and give a more efficient adaptive algorithm to learn a general graph with n vertices and m edges in mlogn + 10m + 3n edge-detecting queries. Finally, we extend the result of general graphs and provide an adaptive algorithm to learn a hidden r-uniform hypergraph with n vertices and m edges in mr(logn + 1)+(r+1)m+m^{r-1}+2^{(r+2)/2}r^{r}m^{r/2} edge-detecting queries.

On the application issue, learning a hidden hypergraph is helpful for us to solve the threshold group testing problem. In this thesis, we apply the strategy used in reconstructing a hidden hypergraph to the threshold group testing problem without gap, showing that up to d positive elements among n given elements can be determined by using O(dlogn) queries, with a matching lower bound. We can also consider threshold group testing on k-inhibitor model, which is a natural combination of threshold group testing and inhibitor model. Then we provide nonadaptive algorithms to conquer the threshold group testing on k-inhibitor model where error-tolerance is considered. Furthermore, we provide a two-stage algorithm to identify all inhibitors and find a
g-approximate set S. Note that S is g-approximate set if and only if |S\D|<=g and |S\D|<=g where g is the gap and D is the set of positive items.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079722801
http://hdl.handle.net/11536/125842
显示于类别:Thesis