完整后设资料纪录
DC 栏位语言
dc.contributor.author蔡春进zh_TW
dc.contributor.authorTSAI CHUEN - JINNen_US
dc.date.accessioned2016-03-28T08:17:26Z-
dc.date.available2016-03-28T08:17:26Z-
dc.date.issued2015en_US
dc.identifier.govdocNSC102-2221-E009-008-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/130023-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=11261910&docId=452748en_US
dc.description.abstract传统多阶冲击器已被广泛地使用于气胶质量分布量测,然而为了能让冲击器各阶采
集到足够的微粒供后续分析,需要较长的采样时间(一般为24 小时)为其主要缺点。为了
能达到即时量测的目的,过去已有学者开发出电子式低压冲击器(electrical low-pressure
impactor, ELPI),且Dekati 公司也已将其作商业贩售。目前ELPI 为一部热门仪器,其获
取數据的反应时间最短可小于5 秒内,故常被用于微粒排放量测及空气品质方面的研
究。然而ELPI 目前仍有许多问题存在,如不旋转的冲击板易造成微粒过度负荷、内部
压差过大以及微粒充电效率过低等。另外, ELPI 的价格高昂,代理商报价高达3 佰3 拾
万台币之多。由于本团队过去已成功地开发出一部30 L/min 的微孔多阶冲击器
(micro-orifice cascade impactor, MCI)及一个具有轴向包覆气流(0.5 to 1.0 L/min)的高效率
单极充电器(Chien and Tsai 2012),故提出此三年计划,结合上述兩种已发展的技术研发
出一部10 L/min 的电子式微孔多阶冲击器(electrical micro-orifice cascade impactor, EMCI)
以解决上述问题。第一年,本计划将先以实验數据來验证低流量(0.5 -1.0 L/min)的效率
单极充电器的數值模拟结果,同时也会设计、制作并测试一部10 L/min 的MCI。为了
进一步降低充电微粒浓度的稀释效应,本研究将会把避免带电微粒在充电区内损失所使
用的包覆气流,经由充电区后方的多孔介质内壁抽離。第二年,本计画将会把高效率气
胶充电器的尺寸放大成流量为10 L/min,并作微粒充电效率的校正,使其可用于EMCI
上。该年度也会着手进行10 L/min MCI 的微粒收集效率曲线校正。另外也将建立EMCI
的數据转换模式,以将测得之气胶电流數据转换为气胶數目及质量分布。第三年,本计
画将进行EMCI 和其他仪器如SMPS (扫描式电移动度微粒粒径分析仪,scanning mobility
particle sizer)、ELPI 及MOUDI (微孔均匀沉积冲击器,micro-orifice uniform cascade
impactor)的现场比对,以验证EMCI 的量测结果,并对其做进一步地修改。最后,为了
验证EMCI 具有较高的微粒负荷能力,本计画也会将其和ELPI 进行长时间的采样比对。
预期在未來本计画所开发之EMCI 可提供更准确的气胶质量及數目分布量测结果。
zh_TW
dc.description.abstractTraditional cascade impactors are widely used to measure aerosol mass distributions but the
major drawback is the required long sampling time (typically 24 hours) due to the necessity of
collecting sensible particle mass on each stage. To achieve real-time measurements, the
electrical low-pressure impactor (ELPI, 10 L/min, 3 nm to 10 m) was developed and
commercialized by Dekati Ltd., Finland. Now the ELPI is a popular instrument for emission
measurements and air quality studies with the minimum response time of less than 5 seconds.
However, there are still many practical problems exist in the ELPI such as particle
overloading on the nonrotating impaction plate, relative high pressure drop, and low aerosol
charging efficiency. Besides, the ELPI is very expensive. The price quoted by the agent is as
high as NT 3.3 million per unit. Since our research team has successfully developed a 30
L/min NCTU micro-orifice cascade impactor (NMCI) and a high efficiency unipolar charger
with radial sheath flow (0.5 to 1.0 L/min), this 3-year project is proposed to combine these
two devices to develop a 10 L/min electrical micro-orifice cascade impactor (EMCI) to
resolve these problems. In the first year, the numerical results will be validated experimentally
first for the high efficiency unipolar charger at the low flow rate of 0.5 to 1.0 L/min.
Meanwhile a 10 L/min MCI will be designed, fabricated and tested. To further reduce the
dilution effect on charged particle concentration, the sheath air flow used in the charging zone
to prevent charged particle loss will be removed through the porous wall installed after the
charging zone. In the second year, the high efficiency aerosol charger will be scaled up to the
high flow rate of 10 L/min and calibrated for particle charging efficiency in order to use in the
EMCI. The calibration of particle collection efficiency curves of the 10 L/min MCI will be
also conducted in this year. Data reduction models will be established to convert the responses
of the EMCI to aerosol number and mass distributions. In the third year, the inter-comparison
of the EMCI system with the SMPS (scanning mobility particle sizer), the ELPI and the
MOUDI (micro-orifice uniform deposit impactor) will be conducted for further validation and
improvement. Finally, to ensure that the EMCI has a higher particle loading capacity, a
long-term sampling comparison with the ELPI will also be conducted. It is expected that the
EMCI developed in this project can provide more accurate measurements of aerosol mass and
number distributions in the future.
en_US
dc.description.sponsorship科技部zh_TW
dc.language.isozh_TWen_US
dc.subject低压冲击器zh_TW
dc.subject电子式低压冲击器zh_TW
dc.subject多阶冲击器zh_TW
dc.subject单极气胶充电器zh_TW
dc.subject气胶电流计zh_TW
dc.subjectlow pressure impactoren_US
dc.subjectelectrical low pressure impactoren_US
dc.subjectcascade impactoren_US
dc.subject_x000d_
unipolar aerosol charger
en_US
dc.subjectaerosol electrometeren_US
dc.title一个电子式微孔多阶冲击器的设计及测试zh_TW
dc.titleDesign and Testing of an Electrical Micro-Orifice-Based Cascade Impactoren_US
dc.typePlanen_US
dc.contributor.department国立交通大学环境工程研究所zh_TW
显示于类别:Research Plans