Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, TMen_US
dc.contributor.authorLin, WWen_US
dc.contributor.authorLiu, JLen_US
dc.contributor.authorWang, WCen_US
dc.date.accessioned2014-12-08T15:18:33Z-
dc.date.available2014-12-08T15:18:33Z-
dc.date.issued2005-09-01en_US
dc.identifier.issn1070-5325en_US
dc.identifier.urihttp://dx.doi.org/10.1002/nla.423en_US
dc.identifier.urihttp://hdl.handle.net/11536/13358-
dc.description.abstractSeveral Jacobi-Davidson type methods are proposed for computing interior eigenpairs of large-scale cubic eigenvalue problems. To successively compute the eigenpairs, a novel explicit non-equivalence deflation method with low-rank updates is developed and analysed. Various techniques such as locking, search direction transformation, restarting, and preconditioning are incorporated into the methods to improve stability and efficiency. A semiconductor quantum dot model is given as an example to illustrate the cubic nature of the eigenvalue system resulting from the finite difference approximation. Numerical results of this model are given to demonstrate the convergence and effectiveness of the methods. Comparison results are also provided to indicate advantages and disadvantages among the various methods. Copyright (c) 2004 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectcubic eigenvalue problemen_US
dc.subjectcubic Jacobi-Davidson methoden_US
dc.subjectnon-equivalence deflationen_US
dc.subject3D Schrodinger equationen_US
dc.titleJacobi-Davidson methods for cubic eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/nla.423en_US
dc.identifier.journalNUMERICAL LINEAR ALGEBRA WITH APPLICATIONSen_US
dc.citation.volume12en_US
dc.citation.issue7en_US
dc.citation.spage605en_US
dc.citation.epage624en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000232020200002-
dc.citation.woscount24-
Appears in Collections:Articles


Files in This Item:

  1. 000232020200002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.