Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Chien-Chia L.en_US
dc.contributor.authorJou, Yow-Jenen_US
dc.contributor.authorCho, Hsun-Jungen_US
dc.date.accessioned2017-04-21T06:55:45Z-
dc.date.available2017-04-21T06:55:45Z-
dc.date.issued2016en_US
dc.identifier.issn0266-4763en_US
dc.identifier.urihttp://dx.doi.org/10.1080/02664763.2015.1126239en_US
dc.identifier.urihttp://hdl.handle.net/11536/134159-
dc.description.abstractWe propose a new collinearity diagnostic tool for generalized linear models. The new diagnostic tool is termed the weighted variance inflation factor (WVIF) behaving exactly the same as the traditional variance inflation factor in the context of regression diagnostic, given data matrix normalized. Compared to the use of condition number (CN), WVIF shows more reliable information on how severe the situation is, when data collinearity does exist. An alternative estimator, a by-product of the new diagnostic, outperforms the ridge estimator in the presence of data collinearity in both aspects of WVIF and CN. Evidences are given through analyzing various real-world numerical examples.en_US
dc.language.isoen_USen_US
dc.subjectCollinearityen_US
dc.subjectcondition numberen_US
dc.subjectdiagnosticen_US
dc.subjectgeneralized linear modelsen_US
dc.subjectvariance inflation factoren_US
dc.titleA new multicollinearity diagnostic for generalized linear modelsen_US
dc.identifier.doi10.1080/02664763.2015.1126239en_US
dc.identifier.journalJOURNAL OF APPLIED STATISTICSen_US
dc.citation.volume43en_US
dc.citation.issue11en_US
dc.citation.spage2029en_US
dc.citation.epage2043en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000382570500005en_US
Appears in Collections:Articles