Title: A Multi Model Voting Enhancement for Newborn Screening Healthcare Information System
Authors: Hsieh, Sung-Huai
Cheng, Po-Hsun
Hsieh, Sheau-Ling
Chen, Po-Hao
Weng, Yung-Ching
Chien, Yin-Hsiu
Wang, Zhenyu
Lai, Feipei
資訊技術服務中心
Information Technology Services Center
Keywords: Newborn Screening;Tandem Mass Spectrometry;Support Vector Machines;Methylmalonic Acidemia
Issue Date: 2009
Abstract: The clinical symptoms of metabolic disorders during neonatal period are often not apparent. If not treated early, irreversible damages such as mental retardation may occur, even death. Therefore, practicing newborn screening is essential, imperative to prevent neonatal from these damages. In the paper, we establish a newborn screening model that utilizes Support Vector Machines (SVM) techniques and enhancements to evaluate, interpret the Methylmalonic Acidemia (MMA) metabolic disorders. The model encompasses the Feature Selections, Grid Search, Cross Validations as well as multi model Voting Mechanism. In the model, the predicting accuracy, sensitivity and specificity of MMA can be improved dramatically. The model will be able to apply to other metabolic diseases as well.
URI: http://hdl.handle.net/11536/134417
ISBN: 978-3-642-00908-2
ISSN: 1860-949X
Journal: NEW ADVANCES IN INTELLIGENT DECISION TECHNOLOGIES
Volume: 199
Begin Page: 481
End Page: +
Appears in Collections:Conferences Paper