Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Jingen_US
dc.contributor.authorWang, Chi-Hsuen_US
dc.contributor.authorChen, C. L. Philipen_US
dc.date.accessioned2017-04-21T06:50:04Z-
dc.date.available2017-04-21T06:50:04Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4244-7317-5en_US
dc.identifier.issn1098-7584en_US
dc.identifier.urihttp://hdl.handle.net/11536/134797-
dc.description.abstractThe capacity of Fuzzy Neural Network (FNN) is explored in this paper. The FNN is first transformed into an equivalent fully connected three layer neural network, or FFNN, via a new approach proposed in this paper. Then the lower and upper bounds of FNN can be found. To check the validity of the theoretical bounds, an example is illustrated with the trainings to yield excellent capacity matching with the theoretical bounds. This new finding has its emerging values in all engineering applications using FNN, such as intelligent adaptive control, pattern recognition, and signal processing, ... , etc.en_US
dc.language.isoen_USen_US
dc.subjectNeural Networksen_US
dc.subjectFuzzy Logicen_US
dc.subjectFuzzy Neural Networksen_US
dc.subjectBack Propagationsen_US
dc.subjectUniversal Approximation Theoremen_US
dc.subjectCapacity of Neural Networksen_US
dc.titleFinding the Capacity of Fuzzy Neural Networks (FNNs) via Its Equivalent Fully Connected Neural Networks (FFNNs)en_US
dc.typeProceedings Paperen_US
dc.identifier.journalIEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011)en_US
dc.citation.spage2193en_US
dc.citation.epage2198en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000295224300329en_US
dc.citation.woscount2en_US
Appears in Collections:Conferences Paper