完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tung-Chienen_US
dc.contributor.authorLiu, Wentaien_US
dc.contributor.authorChen, Liang-Geeen_US
dc.date.accessioned2017-04-21T06:49:35Z-
dc.date.available2017-04-21T06:49:35Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-1814-5en_US
dc.identifier.issn1557-170Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/135024-
dc.description.abstractOn-chip spike detection and principal component analysis (PCA) sorting hardware in an integrated multi-channel neural recording system is highly desired to ease the bandwidth bottleneck from high-density microelectrode array implanted in the cortex. In this paper, we propose the first leading eigenvector generator, the key hardware module of PCA, to enable the whole framework. Based on the iterative eigenvector distilling algorithm, the proposed flipped structure enables the low cost and low power implementation by discarding the division and square root hardware units. Further, the proposed adaptive level shifting scheme optimizes the accuracy and area trade off by dynamically increasing the quantization parameter according to the signal level. With the specification of four principal components/channel, 32 samples/spike, and nine bits/sample, the proposed hardware can train 312 channels per minute with 1MHz operation frequency. 0.13 mm(2) silicon area and 282 mu W power consumption are required in 90 nm 1P9M CMOS process.en_US
dc.language.isoen_USen_US
dc.titleVLSI Architecture of Leading Eigenvector Generation for On-chip Principal Component Analysis Spike Sorting Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8en_US
dc.citation.spage3192en_US
dc.citation.epage+en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000262404501402en_US
dc.citation.woscount9en_US
顯示於類別:會議論文