完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Hua-Chinen_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorWu, Jui-Yunen_US
dc.contributor.authorChuang, Ya-Tingen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2017-04-21T06:49:56Z-
dc.date.available2017-04-21T06:49:56Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-4549-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/136142-
dc.description.abstractThis research incorporates optimized feature selection using an inheritable bi-objective combinatorial genetic algorithm (IBCGA) and mathematic modeling for classification and analysis of electroencephalography (EEG) based attention network. It consists of two parts. 1) We first design the attention network experiments, record the EEG signals of subjects from NeuronScan instrument, and filter noise from the EEG data. We use alerting scores, orienting scores, and conflict scores to serve as the efficiency evaluation of the attention network. 2) Based on an intelligent evolutionary algorithm as the core technique, we analyze the large-scale EEG data, identify a set of important frequency-channel factors, and establish mathematical models for within-subject, across-subject and leave-one-subject-out evaluation using a global optimization approach. The results of using 10 subjects show that the average classification accuracy of independent test in the within-subject case is 86.51%, the accuracy of the across-subject case is 68.44%, and the accuracy of the leave-one-subject-out case is 54.33%en_US
dc.language.isoen_USen_US
dc.titleStatistical Analysis and Classification of EEG-based Attention Network Task Using Optimized Feature Selectionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, COGNITIVE ALGORITHMS, MIND, AND BRAIN (CCMB)en_US
dc.citation.spage100en_US
dc.citation.epage105en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000380501000014en_US
dc.citation.woscount0en_US
顯示於類別:會議論文