标题: 以需求方平台观点预测在即时竞标系统中线上广告流量之方法
Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-side Platforms
作者: 赖旭昭
黄俊龙
Lai, Hsu-Chao
Huang, Jiun-Long
资讯科学与工程研究所
关键字: 实时竞标;线上广告;线性回归;Real-time Bidding;Online Advertising;Linear Regression
公开日期: 2016
摘要: 随着线上广告产业兴起,对需求方平台来说如何掌握广告流量以精确的控制预算花
费变成一个重要的议题。然而需求方平台与供应方平台不同的是,他们难以拿到即时
的观看者以及网页、手机应用程式的资讯,就算拿到了也必须以非常短的时间决策、
回应供应方平台的广告需求,大量的特征会拖垮我们的预测速度。有鉴于此,我们在
本论文提出一个从需求方平台的角度预测广告流量的方法。我们使用更精简、更容易
取得的特征,以及有闭型解的回归模型加速我们的流量预测。除此之外,我们的方法
能辨别流量异常并予以处理,也能跟上长期的趋势。我们最后大约1亿7千万笔测试资
料中预测总误差约0.9%,平均每单位时间(本篇以小时为单位)误差大约11%。
Online advertising has been all the rage these years. Budget control and traffic prediction
turn out to be important issues for the demand-side platforms(DSP). However, DSPs cannot
easily grab the information of audiences and media platforms. Although DSPs might have
the information immediately, it is still hard to response the request of advertisements in realtime
due to the high volume of features. Therefore, we propose a method predicting traffic of
requests of advertisements from perspective of DSPs. The features we used are more simple and
easy to be extracted from history data. The prediction model we chose is regression model with
closed-form solution. Both the features and regression model make our prediction adaptive in
real-time systems. Our method can detect traffic anomalies and prevent it from overwhelming
prediction. Moreover, our method can also keep pace of the trend. Experiment results show that
our method’s error rate of prediction is about 0.9% in total, and 10% per time unit.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070356109
http://hdl.handle.net/11536/139550
显示于类别:Thesis