标题: | 有重叠服务区域之多货柜装载问题 Multiple Containers Loading Problem with Overlapping Service Regions |
作者: | 刘庭妤 姚铭忠 林春成 Liu, Ting-Yu Yao, Ming-Jong Lin, Chun-Cheng 运输与物流管理学系 |
关键字: | 三维装载;货柜装载问题;重叠服务区域;多卸货点;基因演算法;3D loading;container loading problem;overlapping service regions;multi-drop;genetic algorithm |
公开日期: | 2017 |
摘要: | 物流公司所提供之内陆卡车服务,每辆卡车皆有其负责配送之区域,当空间不足时,卡车之间会互相协助配送位于其邻近区域之货物。本研究将可由其他卡车协助区域视为区域间之“重叠服务区域”,位于重叠服务区域之货物可负责其区域之任一辆卡车进行配送。在过去探讨三维货柜装载问题之文献中,并无提出重叠服务区域之概念,故本研究提出“有重叠服务区域之多货柜装载问题”,旨在探讨如何将分属不同服务区域且区域有重叠情形之长方体货物正交装载于多个长方体货柜内,使总货柜之空间使用率最大化。期望透过有效利用货柜之剩余空间,来减少货柜之使用次数及委外帮忙载运之情形,达到降低整体运输成本之目的。 本研究选择以基因演算法求得近似最佳解,并结合子空间法作为解码之机制,提出“基于子空间之基因演算法”(Subvolume-based GA)求解问题。演算法中之每条染色体由三部分编码所组成,分别为货物装载顺序、货物摆放方向及重叠服务区域货物分配,三段编码分开进行交配及突变后再重新组合成一条染色体进行解码,透过此方式能确保染色体之可行性。染色体透过子空间法将货物堆叠至货柜中后产出装载计画(loading plan)。除此之外,本研究亦透过染色体编码之顺序来满足多卸货点限制之要求。最后,透过业界提供之真实数据进行实验案例及分析,验证加入重叠服务区域之设计确能提升货柜之空间使用率。 Logistics companies provide the inland truck service to customers, and each truck has its service region. When the loading space is insufficient, trucks will help each other to load the cargos in its adjacent areas. We consider the regions that can be assisted by other trucks as “overlapping service regions”, and the cargos, which belong to the overlapping service regions can be packed by any truck which serves the region. Therefore, this study proposes a “Multiple Containers Loading Problem with Overlapping Service Regions”. It is con-cerned how to packing a number of rectangular cargos orthogonally onto multiple rectan-gular container so that the utilization rate of the container space is maximized, and it is expected to reduce the overall transportation cost by effectively utilizing the remaining space of the containers. We choose the genetic algorithm to find the near optimum solution and combine with the sub-volume approach as the method of decoding. We develop a “Subvolume-based GA” to solve the problem and determine the loading pattern. In particular, the proposed ap-proach integrates the encoding based on cargo priority, cargo orientation type and the dis-tribution variables of the cargos in the overlapping service regions. It also meets the re-quirements of multi-drop constraint by encoding the order of the genes. At last, our ex-perimental results suggest our approach to be promising. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070453216 http://hdl.handle.net/11536/141957 |
显示于类别: | Thesis |