标题: 建构即时性肝脏移植病患术后急性排斥反应预警模型
Developing a practical warning model for postoperative acute rejection of liver transplant patient
作者: 陈俊霖
刘建良
Chen,Chun-Lin
Liu, Chien Liang
工业工程与管理系所
关键字: 肝脏移植;急性排斥;资料探勘;整体式学习于选取特征;连续时间决策树;Liver transplantation;Acute rejection;Data mining;Feature selection for Ensemble learning;Continuous time decision tree
公开日期: 2017
摘要: 肝脏移植病患手术后最容易发生身体的免疫系统对新移植的肝脏产生排斥反应,严重的排斥反应除了可能造成肝功能衰竭外,也会对病患的生命安全造成进一步的威胁。理想上,病患排斥反应的严重程度应藉由穿刺切片检查来进行判断,但因为肝脏移植病患手术后多有凝血功能障碍等相关问题,因此医护人员转而透过生化检验与血液检验来判断病患排斥反应的严重程度,并依此来调整免疫抑制剂的使用量与用药时间。
本研究期望能建构出一个可于临床上进行应用的预测模型,因此模型除了必须能即时的提供预测结果外,也必须具有一定的预测准确度与可解释性的优点。本研究将以资料驱动的角度出发,使用病患发生排斥反应前一天的抽血检验资料并透过机器学习演算法来进行建模。在建模的过程中,为了使模型能够挖掘出发生排斥反应时各个检测项目数值的变化趋势,因此将检验资料进行变化幅度与类别化等处理;同时为了使模型具有可解释的特点,因此透过整体式学习之方法来选取发生急性排斥反应时所产生的潜在规则,最终经由医护人员的专业经验从中挑选出较符合临床上进行诊断的规则并将这些规则转换成资料的新特征,以建构出最终的预测模型。
本论文考虑了模型解释力以及预测能力,研究结果显示,本研究在准确率与其他先进机器学习演算法差异不大的状况下,还可提供较佳的解释,同时由于本研究建构出的模型可直接呈现进行预测时的预测规则,因此本研究成功的建构出具有即时性、可有效正确预测发生排斥反应的病患与拥有可解释性的模型。
Patients who receive the surgery of liver transplant are most likely to have rejection of the new transplanted liver from the body immune system. A serious rejection may causes of not only liver failure, but also a further life threat for patient. Ideally, the severity of the patient's rejection should be judged by puncture biopsy, but the liver transplant patients have more clotting dysfunction after surgery. Therefore, the medical staffs in turn use the biochemical tests and blood tests to determine the severity of the patient's rejection, and adjust the use of immunosuppressive agents and medication time.
The goal of this thesis is to construct a predictive model that can be applied clinically. Therefore, the model must provide the instant prediction results, and advantages of predictive accuracy and interpretability. This study proposes to use data-driven method to construct the model, using the day before the rejection of the patient's blood test data and through the machine learning algorithm to construct the model. To construct a model which can dig out the changes in the value of each test item when the rejection occurs, we propose to apply both amplitude of variation and the categorization to the test data. Meanwhile, to construct an interpretable model, we propose to use ensemble learning technique to select the potential rules of the acute rejection. Finally, with the help of the professional experience of health care workers, we select rules more in line with the clinical diagnosis and use these rules to form a new feature of the data to construct the final prediction model.
The experimental results indicate that the proposed model could achieve almost identical accuracy as compared with state-of-the-art algorithms. Besides accuracy, the proposed model could offer the practitioners high interpretation. Meanwhile, the constructed model can directly show the forecasting rule once the forecasting is completed, indicating that we successfully construct a real-time, interpretable, and effective model in predicting the rejection of patients.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070453324
http://hdl.handle.net/11536/142410
显示于类别:Thesis