Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Guan-Yuen_US
dc.contributor.authorHsu, Jui-Mingen_US
dc.contributor.authorSheu, Yuan-Chungen_US
dc.date.accessioned2019-04-03T06:43:46Z-
dc.date.available2019-04-03T06:43:46Z-
dc.date.issued2017-08-01en_US
dc.identifier.issn1050-5164en_US
dc.identifier.urihttp://dx.doi.org/10.1214/16-AAP1260en_US
dc.identifier.urihttp://hdl.handle.net/11536/146018-
dc.description.abstractIn this article, we considers reversible Markov chains of which L-2-distances can be expressed in terms of Laplace transforms. The cutoff of Laplace transforms was first discussed by Chen and Saloff-Coste in [J. Funct. Anal. 258 (2010) 2246-2315], while we provide here a completely different pathway to analyze the L-2-distance. Consequently, we obtain several considerably simplified criteria and this allows us to proceed advanced theoretical studies, including the comparison of cutoffs between discrete time lazy chains and continuous time chains. For an illustration, we consider product chains, a rather complicated model which could be involved to analyze using the method in [J. Funct. Anal. 258 (2010) 2246-2315], and derive the equivalence of their L-2- cutoffs.en_US
dc.language.isoen_USen_US
dc.subjectProduct chainsen_US
dc.subjectcutoff phenomenonen_US
dc.titleTHE L-2-CUTOFFS FOR REVERSIBLE MARKOV CHAINSen_US
dc.typeArticleen_US
dc.identifier.doi10.1214/16-AAP1260en_US
dc.identifier.journalANNALS OF APPLIED PROBABILITYen_US
dc.citation.volume27en_US
dc.citation.issue4en_US
dc.citation.spage2305en_US
dc.citation.epage2341en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000409252800011en_US
dc.citation.woscount1en_US
Appears in Collections:Articles


Files in This Item:

  1. 6d989a2b0087a0b35f2c07b33a487053.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.