完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chen, Guan-Yu | en_US |
| dc.contributor.author | Hsu, Jui-Ming | en_US |
| dc.contributor.author | Sheu, Yuan-Chung | en_US |
| dc.date.accessioned | 2019-04-03T06:43:46Z | - |
| dc.date.available | 2019-04-03T06:43:46Z | - |
| dc.date.issued | 2017-08-01 | en_US |
| dc.identifier.issn | 1050-5164 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1214/16-AAP1260 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/146018 | - |
| dc.description.abstract | In this article, we considers reversible Markov chains of which L-2-distances can be expressed in terms of Laplace transforms. The cutoff of Laplace transforms was first discussed by Chen and Saloff-Coste in [J. Funct. Anal. 258 (2010) 2246-2315], while we provide here a completely different pathway to analyze the L-2-distance. Consequently, we obtain several considerably simplified criteria and this allows us to proceed advanced theoretical studies, including the comparison of cutoffs between discrete time lazy chains and continuous time chains. For an illustration, we consider product chains, a rather complicated model which could be involved to analyze using the method in [J. Funct. Anal. 258 (2010) 2246-2315], and derive the equivalence of their L-2- cutoffs. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Product chains | en_US |
| dc.subject | cutoff phenomenon | en_US |
| dc.title | THE L-2-CUTOFFS FOR REVERSIBLE MARKOV CHAINS | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1214/16-AAP1260 | en_US |
| dc.identifier.journal | ANNALS OF APPLIED PROBABILITY | en_US |
| dc.citation.volume | 27 | en_US |
| dc.citation.issue | 4 | en_US |
| dc.citation.spage | 2305 | en_US |
| dc.citation.epage | 2341 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000409252800011 | en_US |
| dc.citation.woscount | 1 | en_US |
| 顯示於類別: | 期刊論文 | |

