完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Wen-Kuangen_US
dc.contributor.authorShen, Chia-Minen_US
dc.contributor.authorSang, Tzu-Hsienen_US
dc.date.accessioned2019-04-02T06:04:16Z-
dc.date.available2019-04-02T06:04:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1546-1874en_US
dc.identifier.urihttp://hdl.handle.net/11536/151066-
dc.description.abstractconventional semi-blind channel estimation schemes for MU-MIMO systems are based on eigenvalue decomposition (EVD) or singular value decomposition (SVD). However, EVD- or SVD-based channel estimation would impose a high computational complexity when the base station is equipped with large number antennas. Those methods are not well suited for real-time processing, especially for Channel State Information (CSI) tracking in time-varying environments. In order to reduce the computational complexity, a PASTd-based (Projection Approximation Subspace Tracking with deflation) CSI tracking algorithm is proposed. The PASTd-based algorithm converges fast, has low computational complexity, and can operate with very small training overhead. Simulation results show that the proposed algorithm can effectively track the CS[ with mild Doppler spreads. Only one pilot symbol per user at the beginning of transmission session is needed to resolve the multiplicative factor ambiguity.en_US
dc.language.isoen_USen_US
dc.subjectMassive MIMOen_US
dc.subjectchannel estimationen_US
dc.subjectchannel truckingen_US
dc.subjectsubspace truckingen_US
dc.subjectPASTden_US
dc.titlePASTd-based CSI Tracking in Massive MIMO Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP)en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000458909600235en_US
dc.citation.woscount0en_US
顯示於類別:會議論文