Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Bo-Chengen_US
dc.contributor.authorPan, Jyun-Weien_US
dc.contributor.authorLin, Chien-Yuen_US
dc.date.accessioned2019-08-02T02:18:37Z-
dc.date.available2019-08-02T02:18:37Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn1063-8210en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TVLSI.2019.2897052en_US
dc.identifier.urihttp://hdl.handle.net/11536/152414-
dc.description.abstractAlthough the existing single-instruction-multiple-data-like (SIMD) accelerators can handle the compressed format of sparse convolutional neural networks, the sparse and irregular distributions of nonzero elements cause low utilization of multipliers in a processing engine (PE) and imbalanced computation between PEs. This brief addresses the above issues by proposing a data screening and task mapping (DSTM) accelerator which integrates a series of techniques, including software refinement and hardware modules. An efficient indexing module is introduced to identify the effectual computation pairs and skip unnecessary computation in a fine-grained manner. The intra-PE load imbalance is alleviated with weight data rearrangement. An effective task sharing mechanism further balances the computation between PEs. When compared with the state-of-the-art SIMD-like accelerator, the proposed DSTM enhances the average PE utilization by 3.5x. The overall processing throughput is 59.7% higher than the previous design.en_US
dc.language.isoen_USen_US
dc.subjectLoad balanceen_US
dc.subjectmachine learningen_US
dc.subjectsingle-instruction-multiple-data (SIMD) architectureen_US
dc.subjectsparse convolutional neural networks (CNNs)en_US
dc.titleEnhancing Utilization of SIMD-Like Accelerator for Sparse Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TVLSI.2019.2897052en_US
dc.identifier.journalIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMSen_US
dc.citation.volume27en_US
dc.citation.issue5en_US
dc.citation.spage1218en_US
dc.citation.epage1222en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000466226400020en_US
dc.citation.woscount0en_US
Appears in Collections:Articles