Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, Chia-Chunen_US
dc.contributor.authorLee, Chien-Chingen_US
dc.contributor.authorYeng, Chia-Hongen_US
dc.contributor.authorSo, Edmund-Cheungen_US
dc.contributor.authorLin, Bor-Shyhen_US
dc.contributor.authorChen, Yeou-Jiunnen_US
dc.date.accessioned2019-12-13T01:09:53Z-
dc.date.available2019-12-13T01:09:53Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn0946-7076en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00542-019-04654-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/153006-
dc.description.abstractFor steady state visually evoked potential (SSVEP) based brain computer interfaces (BCIs), the elicited SSVEP signals always contain noises and then the performance of SSVEP-based BCIs would be greatly degraded in practical applications. Therefore, to develop an SSVEP signal enhancement would be able to increase the accuracy of SSVEP-based BCIs. In this study, a convolutional denoising autoencoder based SSVEP signal enhancement is proposed to suppress the noise components. The convolutional denoising autoencoder is applied to estimate and suppress the noise components. To effectively estimate the noise components, a sinusoid wave is designed as an ideal SSVEP signal. To ignore the effects of phase, cross correlation is adopted to estimate the phase in the training stage. The experimental results evaluated by using signal-to-noise ratio and canonical correspondence analysis showed that the proposed approaches can effectively suppress the noises components. Therefore, the proposed approach can be applied to develop robust SSVEP-based BCIs.en_US
dc.language.isoen_USen_US
dc.titleConvolutional denoising autoencoder based SSVEP signal enhancement to SSVEP-based BCIsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00542-019-04654-2en_US
dc.identifier.journalMICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMSen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department影像與生醫光電研究所zh_TW
dc.contributor.departmentInstitute of Imaging and Biomedical Photonicsen_US
dc.identifier.wosnumberWOS:000489924500001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles