完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Gi-Renen_US
dc.contributor.authorLo, Yu-Lunen_US
dc.contributor.authorMalik, Johnen_US
dc.contributor.authorSheu, Yuan-Chungen_US
dc.contributor.authorWu, Hau-Tiengen_US
dc.date.accessioned2020-02-02T23:54:39Z-
dc.date.available2020-02-02T23:54:39Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1746-8094en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.bspc.2019.101576en_US
dc.identifier.urihttp://hdl.handle.net/11536/153593-
dc.description.abstractWe propose a novel algorithm for sleep dynamics visualization and automatic annotation by applying diffusion geometry based sensor fusion algorithm to fuse spectral information from two electroencephalograms (EEG). The diffusion geometry approach helps organize the nonlinear dynamical structure hidden in the EEG signal. The visualization is achieved by the nonlinear dimension reduction capability of the chosen diffusion geometry algorithms. For the automatic annotation purpose, the support vector machine is trained to predict the sleep stage. The prediction performance is validated on a publicly available benchmark database, Physionet Sleep-EDF [extended] SC* (SC = Sleep Cassette) and ST* (ST = Sleep Telemetry), with the leave-one-subject-out cross validation. When we have a single EEG channel (Fpz-Cz), the overall accuracy, macro F1 and Cohen's kappa achieve 82.72%, 75.91% and 76.1% respectively in Sleep-EDF SC* and 78.63%, 73.58% and 69.48% in Sleep-EDF ST*. This performance is compatible with the state-of-the-art results. When we have two EEG channels (Fpz-Cz and Pz-Oz), the overall accuracy, macro F1 and Cohen's kappa achieve 84.44%, 78.25% and 78.36% respectively in Sleep-EDF SC* and 79.05%, 74.73% and 70.31% in Sleep-EDF ST*. The results suggest the potential of the proposed algorithm in practical applications. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectElectroencephalogramen_US
dc.subjectScattering transformen_US
dc.subjectSensor fusionen_US
dc.subjectAlternating diffusion mapen_US
dc.subjectMultiview diffusionen_US
dc.subjectSleep stageen_US
dc.titleDiffuse to fuse EEG spectra - Intrinsic geometry of sleep dynamics for classificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bspc.2019.101576en_US
dc.identifier.journalBIOMEDICAL SIGNAL PROCESSING AND CONTROLen_US
dc.citation.volume55en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000502893200038en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文