Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, CYen_US
dc.contributor.authorHsieh, CYen_US
dc.contributor.authorChen, SHen_US
dc.contributor.authorHsieh, BCYen_US
dc.contributor.authorChen, CRen_US
dc.date.accessioned2014-12-08T15:26:33Z-
dc.date.available2014-12-08T15:26:33Z-
dc.date.issued2002en_US
dc.identifier.isbn981-238-121-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/18845-
dc.description.abstractdIn this paper, cellular neural network with ratio memory is proposed for non-saturated binary image processing. The Hebbien learning rule will be used to learn the weight of template A. The RMCNN system can recognize one non-saturated binary image and remove most of the noise added to the image pattern during the recognition period. The behavior of recognizing non-saturated binary images will be proved by mathematics equations. The effect will be simulated by Matlab software. With the method for non-saturated binary image processing, this theory can be easily implemented in hardware.en_US
dc.language.isoen_USen_US
dc.titleNon-saturated binary image learning and recognition using the ratio-memory cellular neural network (RMCNN)en_US
dc.typeProceedings Paperen_US
dc.identifier.journalCELLULAR NEURAL NETWORKS AND THEIR APPLICATIONSen_US
dc.citation.spage624en_US
dc.citation.epage629en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000178709500077-
Appears in Collections:Conferences Paper