完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chang, GJ | en_US |
| dc.contributor.author | Liaw, SC | en_US |
| dc.date.accessioned | 2014-12-08T15:41:25Z | - |
| dc.date.available | 2014-12-08T15:41:25Z | - |
| dc.date.issued | 2003-01-01 | en_US |
| dc.identifier.issn | 0381-7032 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/28171 | - |
| dc.description.abstract | An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that f(x)-f(y) greater than or equal to 2 if d(G)(x,y) =1 and f(x)-f(y) greater than or equal to 1 if d(G)(x,y) = 2. The L(2, 1)-labeling problem is to find the smallest number lambda(G) such that there exists a L(2, 1)-labeling function with no label greater than lambda(G). Motivated by the channel assignment problem introduced by Hale, the L(2, 1)-labeling problem has been extensively studied in the past decade. In this paper, we study this concept for digraphs. In particular, results on ditrees are given. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | L(2,1)-labeling | en_US |
| dc.subject | L(2,1)-labeling number | en_US |
| dc.subject | ditree | en_US |
| dc.title | The L(2,1)-labeling problem on ditrees | en_US |
| dc.type | Article | en_US |
| dc.identifier.journal | ARS COMBINATORIA | en_US |
| dc.citation.volume | 66 | en_US |
| dc.citation.issue | en_US | |
| dc.citation.spage | 23 | en_US |
| dc.citation.epage | 31 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000181748000002 | - |
| dc.citation.woscount | 13 | - |
| 顯示於類別: | 期刊論文 | |

