Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, GJen_US
dc.contributor.authorLiaw, SCen_US
dc.date.accessioned2014-12-08T15:41:25Z-
dc.date.available2014-12-08T15:41:25Z-
dc.date.issued2003-01-01en_US
dc.identifier.issn0381-7032en_US
dc.identifier.urihttp://hdl.handle.net/11536/28171-
dc.description.abstractAn L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that f(x)-f(y) greater than or equal to 2 if d(G)(x,y) =1 and f(x)-f(y) greater than or equal to 1 if d(G)(x,y) = 2. The L(2, 1)-labeling problem is to find the smallest number lambda(G) such that there exists a L(2, 1)-labeling function with no label greater than lambda(G). Motivated by the channel assignment problem introduced by Hale, the L(2, 1)-labeling problem has been extensively studied in the past decade. In this paper, we study this concept for digraphs. In particular, results on ditrees are given.en_US
dc.language.isoen_USen_US
dc.subjectL(2,1)-labelingen_US
dc.subjectL(2,1)-labeling numberen_US
dc.subjectditreeen_US
dc.titleThe L(2,1)-labeling problem on ditreesen_US
dc.typeArticleen_US
dc.identifier.journalARS COMBINATORIAen_US
dc.citation.volume66en_US
dc.citation.issueen_US
dc.citation.spage23en_US
dc.citation.epage31en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000181748000002-
dc.citation.woscount13-
Appears in Collections:Articles