Full metadata record
DC FieldValueLanguage
dc.contributor.authorShieh, Gen_US
dc.contributor.authorLee, JCen_US
dc.date.accessioned2014-12-08T15:42:21Z-
dc.date.available2014-12-08T15:42:21Z-
dc.date.issued2002-06-01en_US
dc.identifier.issn0020-3157en_US
dc.identifier.urihttp://dx.doi.org/10.1023/A:1022474018976en_US
dc.identifier.urihttp://hdl.handle.net/11536/28768-
dc.description.abstractWe apply a Bayesian approach to the problem of prediction in an unbalanced growth curve model using noninformative priors. Due to the complexity of the model, no analytic forms of the predictive densities are available. We propose both approximations and a prediction-oriented Metropolis-Hastings sampling algorithm for two types of prediction, namely the prediction of future observations for a new subject and the prediction of future values for a partially observed subject. They are illustrated and compared through real data and simulation studies. Two of the approximations compare favorably with the approximation in Fearn (1975, Biometrika, 62, 89-100) and are very comparable to the more accurate Rao-Blackwellization from Metropolis-Hastings sampling algorithm.en_US
dc.language.isoen_USen_US
dc.subjectapproximationsen_US
dc.subjectMetropolis-Hastingsen_US
dc.subjectposterioren_US
dc.subjectrandom coefficient regressionen_US
dc.subjectRao-Blackwellizationen_US
dc.titleBayesian prediction analysis for growth curve model using noninformative priorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1022474018976en_US
dc.identifier.journalANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICSen_US
dc.citation.volume54en_US
dc.citation.issue2en_US
dc.citation.spage324en_US
dc.citation.epage337en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000176673400006-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000176673400006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.