完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, SMen_US
dc.contributor.authorLee, SHen_US
dc.contributor.authorLee, CHen_US
dc.date.accessioned2014-12-08T15:43:36Z-
dc.date.available2014-12-08T15:43:36Z-
dc.date.issued2001-08-01en_US
dc.identifier.issn0883-9514en_US
dc.identifier.urihttp://dx.doi.org/10.1080/088395101750363984en_US
dc.identifier.urihttp://hdl.handle.net/11536/29480-
dc.description.abstractFuzzy classification is one of the important applications of fuzzy logic. Fuzzy classification Systems are capable of handling perceptual uncertainties, such as the vagueness and ambiguity involved in classification problems. The most important task to accomplish a fuzzy classification system is to rnd a set of fuzzy rules suitable for a specific classification problem. In this article, we present a new method for generating fuzzy rules from numerical data for handling fuzzy classification problems based on the fuzzy subsethood values between decisions to be made and terms of attributes by using the level threshold value alpha and the applicability threshold value beta, where alpha is an element of [0, 1] and beta is an element of [0, 1]. We apply the proposed method to deal with the "Saturday Morning Problem,'' where the proposed method has a higher classification accuracy rate and generates fewer fuzzy rules than the existing methods.en_US
dc.language.isoen_USen_US
dc.titleA new method for generating fuzzy rules from numerical data for handling classification problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/088395101750363984en_US
dc.identifier.journalAPPLIED ARTIFICIAL INTELLIGENCEen_US
dc.citation.volume15en_US
dc.citation.issue7en_US
dc.citation.spage645en_US
dc.citation.epage664en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000170353800003-
dc.citation.woscount38-
顯示於類別:期刊論文


文件中的檔案:

  1. 000170353800003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。