完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuruswami, Ven_US
dc.contributor.authorRangan, CPen_US
dc.contributor.authorChang, MSen_US
dc.contributor.authorChang, GJen_US
dc.contributor.authorWong, CKen_US
dc.date.accessioned2014-12-08T15:44:18Z-
dc.date.available2014-12-08T15:44:18Z-
dc.date.issued2001en_US
dc.identifier.issn0010-485Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/29916-
dc.identifier.urihttp://dx.doi.org/10.1007/s006070170039en_US
dc.description.abstractFor a fixed integer r greater than or equal to 2, the K-r-packing problem is to find the maximum number of pairwise vertex-disjoint K-r's (complete graphs on r vertices) in a given graph. The K-r-factor problem asks fur the existence of a partition of the vertex set of a graph into K-r's. The K-r-packing problem is a natural generalization of the classical matching problem, but turns out to be much harder for r greater than or equal to 3 - it is known that for r greater than or equal to 3 the K-r-factor problem is NP-complete: for graphs with clique number r [16]. This paper considers the complexity of the K-r-packing problem on restricted classes of graphs. We first prove that for r greater than or equal to 3 the K-r-packing problem is NP-complete even when restrict to chordal graphs, planar graphs (for r = 3. 4 only), line graphs acid total graphs. The hardness result for K-3- packing on chordal graphs answers an open question raised in [6]. We also give (simple) polynomial algorithms for the K-3-packing and the K-r-factor problems on split graphs (this is interesting in light of the fact that K-r-packing becomes NP-complete on split graphs for r greater than or equal to 4), and for the K-r-packing problem on cographs.en_US
dc.language.isoen_USen_US
dc.subjectmatchingen_US
dc.subjectK-r-packingen_US
dc.subjectK-r-factoren_US
dc.subjectNP-completenessen_US
dc.subjectchordal graphen_US
dc.subjectsplit graphen_US
dc.subjectcographen_US
dc.subjectline graphen_US
dc.titleThe K-r-packing problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s006070170039en_US
dc.identifier.journalCOMPUTINGen_US
dc.citation.volume66en_US
dc.citation.issue1en_US
dc.citation.spage79en_US
dc.citation.epage89en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000167415100004-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. 000167415100004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。