标题: 分析在全电量之粒子影响下之统计性软性电子错误率
Fast Statistical Soft Error Rate (SSER) Analysis Considering Full-Spectrum Charge Collection
作者: 黄宣铭
Huang, Hsuan-Ming
温宏斌
Wen, Hung-Pin
电信工程研究所
关键字: 软性电子错误率;Soft error
公开日期: 2010
摘要: 近年来,随着深次微米时代的来临,制程变异对于系统的稳健带来了极大的挑战。其中,软性电子错误率在先进电路的设计上被发现的机率也愈来愈高,对电路之可靠度而言又变成一个重要的研究题目。然而,在前人的研究中,并无一个可有效地估计在制程变异下之软性电子错误率。因此,在本论文中建立出一个准确且快速的方法来有效地估计在制程变异下,软性电子错误率对电路可靠度之影响,其中主要包涵有以下二个部分(1) 资料重建及改良式机器学习方法 (2) 粒子电量边界选择自动化。透过改良式机器学习配合资料重建,我们可快速建构出精确的软性电子错误率模型。在建构精确模型后,此方法会自动选择所需计算之粒子电量,并排除掉其它不需计算电量,以逵加速计算软性电子错误率之目的。实验结果证明,此方法在ISCAS 电路中与蒙地卡罗电路模拟相比可加速约10^7倍,且只有0.8%的平均误差
This thesis re-examines the soft error effect caused by radiation-induced particles beyond the deep sub-micron regime. Soft error has become one of critical reliability concerns due to the continuous technology scaling. Hence, it is necessary to develop an approach to
accurately estimate soft error rate (SER) integrated with the process-variation impact. Due to inaccuracy of previously published approaches, an accurate-and-efficient framework is proposed in this thesis to perform statistical soft error rate (SSER) analysis considering full-spectrum charge collection. This framework mainly consists of two components (1) intensified learning with data reconstruction and (2) automatic bounding-charge selection.
Experimental results show that the proposed framework can speed up SER estimation at the order of 10^7X with only 0.8% accuracy loss compared to Monte-Carlo SPICE simulation
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079513641
http://hdl.handle.net/11536/41105
显示于类别:Thesis


文件中的档案:

  1. 364101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.