Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Ren-Cangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Chern-Shuhen_US
dc.date.accessioned2014-12-08T15:06:41Z-
dc.date.available2014-12-08T15:06:41Z-
dc.date.issued2010-07-01en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00211-010-0297-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/5231-
dc.description.abstractA detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEP) (Sigma(d)(l=0)A(l)lambda(l)) x = 0, A(d-l) = epsilon A(l)(star) for l = 0, 1, ..., left perpendiculard/2right perpendicular, where star is one of the two actions: transpose and conjugate transpose, and epsilon is an element of {+/- 1}. Each of them has its application background with the case star taking transpose and epsilon = 1 attracting a great deal of attention lately because of its application in the fast train modeling. Computable formulas and bounds for the structured backward errors are obtained. The analysis reveals distinctive features of PPEP from general polynomial eigenvalue problems (PEP) investigated by Tisseur (Linear Algebra Appl 309: 339-361, 2000) and by Liu and Wang (Appl Math Comput 165: 405-417, 2005).en_US
dc.language.isoen_USen_US
dc.titleStructured backward error for palindromic polynomial eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-010-0297-4en_US
dc.identifier.journalNUMERISCHE MATHEMATIKen_US
dc.citation.volume116en_US
dc.citation.issue1en_US
dc.citation.spage95en_US
dc.citation.epage122en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000279307000004-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000279307000004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.